-
截至2019年底,全国城镇累计建成污水处理厂超过1×104座,污泥的年产生量近6×107 t (以含水率80%计)。厌氧消化是国际上大力推行的污泥处置利用技术[1-2],然而,由于我国城镇污泥中有机质的含量偏低(40%~60%),厌氧消化产甲烷的效能低[3],导致目前配备厌氧消化设施的污水处理厂的比例不足30%。与此同时,随着餐饮业的快速发展,餐厨垃圾的产生急剧增多。据报道,我国目前餐厨垃圾的年产量已达6×107 t[4]。餐厨垃圾中易腐有机质含量高(>80%),厌氧消化过程中常出现挥发性脂肪酸积累、酸化抑制产甲烷的现象[5]。鉴于此,有研究者提出了将污泥与餐厨垃圾混合厌氧消化的技术思路[6-8]。从长沙、大连、襄阳等地的污泥-餐厨垃圾厌氧消化的工程运行实效来看,该方式可显著提升厌氧消化的稳定性和甲烷产率(500 t·d−1的处理条件下,标准状况下产气可达3×104 m3·d−1)。然而,混合厌氧消化后所产生的消化产物的含水率一般仍很高(>95%),从而给后续的转运、堆肥、焚烧以及土地利用等带来了很大的困难。如何促进污泥-餐厨垃圾厌氧消化物的高效脱水是一个亟需解决的技术难题。
近10年来,过硫酸盐高级氧化在促进城镇污泥脱水时具有快速、简便等特点,受到了众多研究者的广泛关注。其原理为:通过能量(光、热)或过渡金属(Fe0, Co2+等)活化,过一硫酸盐(PMS)或过二硫酸盐(PDS)产生高活性
${\rm{SO}}_4^ - $ ∙(E0(${\rm{SO}}_4^ - $ ∙/${\rm{SO}}_4^{2 - }$ )=2.43 V,以NHE计),氧化裂解污泥细胞和降解胞外聚合物(EPS),促使大量结合态水的释放(转化为自由水),进而提升脱水性能。KIM等[9]发现,热活化PDS(投加量2 mmol∙g−1 VSS)可提高剩余活性污泥脱水,在80 ℃下、处理60 min,污泥CST可降低77%。宋秀兰等[10]发现,Fe2+活化PDS可使浓缩污泥的过滤比阻(SRF)下降96%。NI等[11]发现,通过Fe0活化PDS亦可明显改善好氧消化污泥的脱水性能,处理30 min后,CST从119.1 s降至21.9 s。然而,与剩余活性污泥和浓缩污泥相比,污泥-餐厨垃圾混合厌氧消化产物的碱度更高、絮体粒径尺寸更小[12],因此,相对而言更难脱水。目前,关于过硫酸盐氧化促进污泥-餐厨垃圾厌氧消化物脱水的报道还相对较少,对于相关作用机理的认识也十分有限。为此,本研究以污泥-餐厨垃圾厌氧消化物为研究对象,探究了热活化过硫酸盐处理对其脱水性能的影响,并从处理体系中过硫酸盐分解、自由基的产生、胞外聚合物(EPS)含量和组成的变化以及消化物微观形貌等方面分析其可能的作用机制,旨在为污泥-餐厨垃圾厌氧消化物的高效脱水提供参考。
热活化过二硫酸盐改善污泥-餐厨垃圾厌氧消化物脱水性能
Improved dewaterability of anaerobic digestate of sewage sludge and food waste by thermally activated peroxydisulfate oxidation
-
摘要: 为了解热活化过硫酸盐氧化对污泥-餐厨垃圾厌氧消化物脱水性能的影响,以毛细吸水时间(CST)、过二硫酸盐(PDS)分解速率、自由基产生种类、胞外聚合物(EPS)组分含量以及厌氧消化物的微观形貌等观察指标,比较了不同温度条件下(50~80 ℃)的热活化PDS氧化对脱水性能的影响,并探讨了其作用机理。结果表明,热活化PDS氧化可显著提高污泥-餐厨垃圾厌氧消化物的脱水性能,且升高温度可进一步促进脱水效果。在温度70 ℃、PDS投加量4 mmol·g−1 (以干物质计)、反应时间为240 min的最佳条件下,厌氧消化物的CST从初始1 064.9 s大幅降至39.4 s,脱水效果明显提升,沉淀后的上清液也较为清澈。处理体系中有大量
${{\rm{SO}}_4^ -} $ ·和·OH生成,TB-EPS中蛋白质的降解率高达76.6%,絮体结构变得较为松散,其表面和内部均有大量孔洞。热活化PDS处理污泥-餐厨垃圾厌氧消化物的过程中产生的自由基促使消化物絮体破解和物质释放并降解,可能是脱水性能改善的主要原因。该研究结果可为热活化过硫酸盐氧化技术在污泥-餐厨垃圾厌氧消化物脱水中的应用提供参考。Abstract: The influence of thermally activated peroxydisulfate (PDS) oxidation process with different temperature (50~80 ℃) on the dewaterability of the anaerobic digestate of sewage sludge and food waste was investigated in this study. The key parameters affecting the dewatering, such as capillary suction time (CST), PDS decomposition, radical species, the compositions and contents of extracellular polymer substances (EPS) and microstructure of anaerobic digestate, were determined to reveal the potential conditioning mechanism. The results indicated that thermally activated PDS oxidation significantly improved the dewaterability of the sludge-food waste anaerobic digestate, and that the extent of the improvement in the dewaterability increased with the increase in temperature. The optimal conditions for thermally activated PDS treatment were as follows: temperature of 70 ℃, sodium persulfate dosage of 4 mmol·g−1 PDS, and the reaction time of 240 min. After the PDS treatment, the CST of the anaerobic digestate decreased from 1064.9 s to 39.4 s and the final supernatant is clear. It was also found that 76.6% of protein in TB-EPS was degraded and significant signals for${\rm{SO}}_4^ - $ · and ·OH were produced during the PDS treatment. Besides, surface morphology of the anaerobic digestate treated by PDS exhibited a porous structure, building a favorable condition for the release of internal water. These results suggest that during thermally activated PDS treatment, the production of radicals resulted in the destruction of the floc structure of anaerobic digestate and the degradation of microbial EPS, which may be responsible for the improvement in the dewaterability of the sludge-food waste anaerobic digestate. The results of this study can provide a fundamental guidance for the application of thermally activated persulfate oxidation technology to improve the dewatering of sewage sludge-food waste anaerobic digestate.-
Key words:
- sewage sludge /
- food waste /
- anaerobic digestate /
- dewaterability /
- peroxydisulfate /
- thermal activation
-
-
[1] 董滨, 高君, 陈思思, 等. 我国剩余污泥厌氧消化的主要影响因素及强化[J]. 环境科学, 2020, 41(7): 3384-3391. [2] XU Y, LU Y Q, ZHENG L K, et al. Perspective on enhancing the anaerobic digestion of waste activated sludge[J]. Journal of Hazardous Materials, 2020, 389: 121847. doi: 10.1016/j.jhazmat.2019.121847 [3] CLIMENT M, FERRER I, BAEZA M M, et al. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions[J]. Chemical Engineering Journal, 2007, 133(1/2/3): 335-342. [4] 邴君妍, 罗恩华, 金宜英, 等. 中国餐厨垃圾资源化利用系统建设现状研究[J]. 环境科学与管理, 2018, 43(4): 39-43. doi: 10.3969/j.issn.1673-1212.2018.04.011 [5] YANG L L, HUANG Y, ZHAO M X, et al. Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment[J]. International Biodeterioration & Biodegradation, 2015, 105: 153-159. [6] 段妮娜, 董滨, 李江华, 等. 污泥和餐厨垃圾联合干法中温厌氧消化性能研究[J]. 环境科学, 2013, 34(1): 321-327. [7] 郝晓地, 唐兴, 曹达啓. 剩余污泥厌氧共消化技术研究现状及应用趋势[J]. 环境工程学报, 2016, 10(12): 6809-6818. doi: 10.12030/j.cjee.201508039 [8] DAI X H, DUAN N A, DONG B, et al. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance[J]. Waste Management, 2013, 33(2): 308-316. doi: 10.1016/j.wasman.2012.10.018 [9] KIM M S, LEE K M, KIM H E, et al. Disintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterability[J]. Environmental Science & Technology, 2016, 50(13): 7106-7115. [10] 宋秀兰, 石杰, 吴丽雅. 过硫酸盐氧化法对污泥脱水性能的影响[J]. 环境工程学报, 2015, 9(11): 5585-5590. doi: 10.12030/j.cjee.20151172 [11] NI B J, YAN X F, SUN J, et al. Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge[J]. Chemosphere, 2019, 232: 45-53. doi: 10.1016/j.chemosphere.2019.05.148 [12] 张超, 李本高, 陈银广. 影响剩余污泥脱水的关键因素研究进展[J]. 环境科学与技术, 2011, 34(6G): 152-156. [13] LIANG C J, HUANG C F, MOHANTY N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J]. Chemosphere, 2008, 73(9): 1540-1543. doi: 10.1016/j.chemosphere.2008.08.043 [14] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review[J]. Biotechnology Advances, 2010, 28(6): 882-894. doi: 10.1016/j.biotechadv.2010.08.001 [15] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1 [16] ZRINYI N, PHAM A L T. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution[J]. Water Research, 2017, 120: 43-51. doi: 10.1016/j.watres.2017.04.066 [17] JOHNSON R L, TRATNYEK P G, JOHNSON R O. Persulfate persistence under thermal activation conditions[J]. Environmental Science & Technology, 2008, 42(24): 9350-9356. [18] GE D D, DONG Y T, ZHANG W R, et al. A novel Fe2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight[J]. Science of the Total Environment, 2020, 733: 139146. doi: 10.1016/j.scitotenv.2020.139146 [19] WANG X M, WANG W, ZHOU B, et al. Improving solid-liquid separation performance of anaerobic digestate from food waste by thermally activated persulfate oxidation[J]. Journal of Hazardous Materials, 2020, 398: 122989. doi: 10.1016/j.jhazmat.2020.122989 [20] 高诗卉, 王毅力. Fe0/Fe3C@CS激发PMS调理对活性污泥脱水性能的影响[J]. 环境工程学报, 2020, 14(7): 1915-1923. [21] YU G H, HE P J, SHAO L M, et al. Stratification structure of sludge flocs with implications to dewaterability[J]. Environmental Science & Technology, 2008, 42(21): 7944-7949. [22] LI Y F, ZHU Y Q, WANG D B, et al. Fe(Ⅱ) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication[J]. Water Research, 2020, 174: 115626. doi: 10.1016/j.watres.2020.115626