[1] HOWARD P H, MUIR D C G. Identifying new persistent and bioaccumulative organics Among chemicals in commerce. Ⅲ: Byproducts, impurities, and transformation products [J]. Environmental Science & Technology, 2013, 47(10): 5259-5266.
[2] GAO C J, XIA L L, WU C C, et al. The effects of prosperity indices and land use indicators of an urban conurbation on the occurrence of hexabromocyclododecanes and tetrabromobisphenol A in surface soil in South China [J]. Environmental Pollution, 2019, 252: 1810-1818. doi: 10.1016/j.envpol.2019.06.128
[3] FENG Y P, LU K, GAO S X, et al. The fate and transformation of tetrabromobisphenol A in natural waters, mediated by oxidoreductase enzymes [J]. Environmental Science-Processes & Impacts, 2017, 19(4): 596-604.
[4] LIU A F, QU G B, YU M, et al. Tetrabromobisphenol-A/S and nine novel analogs in biological samples from the Chinese Bohai Sea: Implications for trophic transfer [J]. Environmental Science & Technology, 2016, 50(8): 4203-4211.
[5] HUANG M R, LI J, XIAO Z X, et al. Tetrabromobisphenol A and hexabromocyclododecane isomers in breast milk from the general population in Beijing, China: Contamination levels, temporal trends, nursing infant's daily intake, and risk assessment [J]. Chemosphere, 2020: 244. doi: 10.1016/j.chemosphere.2019.125524
[6] GUSTAVSSON J, WIBERG K, RIBELI E, et al. Screening of organic flame retardants in Swedish river water [J]. Science of the Total Environment, 2018, 625: 1046-1055. doi: 10.1016/j.scitotenv.2017.12.281
[7] YANG S W, WANG S R, WU F C, et al. Tetrabromobisphenol A: tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China [J]. Environmental Science and Pollution Research, 2012, 19(9): 4090-4096. doi: 10.1007/s11356-012-1023-9
[8] GRASSELLI E, CORTESE K, FABBRI R, et al. Thyromimetic actions of tetrabromobisphenol A (TBBPA) in steatotic FaO rat hepatoma cells [J]. Chemosphere, 2014, 112: 511-518. doi: 10.1016/j.chemosphere.2014.03.114
[9] SHEIKH I A, BEG M A. Structural binding interactions of tetrabromobisphenol A with sex steroid nuclear receptors and sex hormone-binding globulin [J]. Journal of Applied Toxicology, 2020, 40(6): 832-842. doi: 10.1002/jat.3947
[10] ZHU B R, ZHAO G, YANG L H, et al. Tetrabromobisphenol A caused neurodevelopmental toxicity via disrupting thyroid hormones in zebrafish larvae [J]. Chemosphere, 2018, 197: 353-361. doi: 10.1016/j.chemosphere.2018.01.080
[11] LIU A F, ZHAO Z S, QU G B, et al. Transformation/degradation of tetrabromobisphenol A and its derivatives: A review of the metabolism and metabolites [J]. Environmental Pollution, 2018, 243: 1141-1153. doi: 10.1016/j.envpol.2018.09.068
[12] SAYGIDEGER S D, OKKAY Z. Effect of 2, 4-dichlorophenoxyacetic acid on growth, protein and chlorophyll-a content of Chlorella vulgaris and Spirulina platensis cells [J]. Journal of Environmental Biology, 2008, 29(2): 175-178.
[13] GONG N, SHAO K S, CHE C, et al. Stability of nickel oxide nanoparticles and its influence on toxicity to marine algae Chlorella vulgaris [J]. Marine Pollution Bulletin, 2019, 149: 110532. doi: 10.1016/j.marpolbul.2019.1105327
[14] PENG F Q, YING G G, YANG B, et al. Biotransformation of the flame retardant tetrabromobisphen-A (TBBPA) by freshwater microalgae [J]. Environmental Toxicology and Chemistry, 2014, 33(8): 1705-1711. doi: 10.1002/etc.2589
[15] DEBENEST T, GAGNE F, PETIT A-N, et al. Monitoring of a flame retardant (tetrabromobisphenol A) toxicity on different microalgae assessed by flow cytometry [J]. Journal of Environmental Monitoring, 2010, 12(10): 1918-1923. doi: 10.1039/c0em00105h
[16] ZHANG F, YE N, WANG S, et al. Dissolved organic matter modulates algal oxidative stress and membrane system responses to binary mixtures of nano-metal-oxides (nCeO2, nMgO and nFe3O4) and sulfadiazine [J]. Nanomaterials (Basel, Switzerland), 2019, 9(5): 712-723. doi: 10.3390/nano9050712
[17] HOU X W, YU M, LIU A F, et al. Glycosylation of tetrabromobisphenol A in pumpkin [J]. Environmental Science & Technology, 2019, 53(15): 8805-8812.
[18] 王晓艳, 蒋凤华, 曹为, 等. 六溴环十二烷和四溴双酚A对4种海洋微藻的急性毒性 [J]. 海洋环境科学, 2013, 32(6): 831-835. WANG X Y, JIANG F H, CAO W, et al. Acute toxic effect of hexabromocyclododecane and tetrabromobisphenol A on four marine microalgae [J]. Marine Environmental Science, 2013, 32(6): 831-835(in Chinese).
[19] 彭浩. 环境及生物样品中溴代阻燃剂四溴双酚-A(TBBP-A)水平的研究[D]. 北京: 中央民族大学, 2007: 80. PENG H. Study on the level of brominated flame retardant tetrabromobisphenol A (TBBP-A) in environmental and biological samples[D] Beijing: Minzu University of China, 2007: 80 (in Chinese).
[20] LIU N, ZHANG H, ZHAO J F, et al. Mechanisms of cetyltrimethyl ammonium chloride-induced toxicity to photosystem Ⅱ oxygen evolution complex of Chlorella vulgaris F1068 [J]. Journal of Hazardous Materials, 2020, 383: 121063. doi: 10.1016/j.jhazmat.2019.121063
[21] XIONG J Q, KURADE M B, ABOU-SHANAB R A I, et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate [J]. Bioresource Technology, 2016, 205: 183-190. doi: 10.1016/j.biortech.2016.01.038
[22] PANCHA I, CHOKSHI K, MAURYA R, et al. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp CCNM 1077 [J]. Bioresource Technology, 2015, 189: 341-348. doi: 10.1016/j.biortech.2015.04.017
[23] JOCHEM F J. Probing the physiological state of phytoplankton at the single-cell level [J]. Scientia Marina, 2000, 64(2): 183-195. doi: 10.3989/scimar.2000.64n2183
[24] MACHADO M D, SOARES E V. Optimization of a Microplate-Based Assay to Assess Esterase Activity in the Alga Pseudokirchneriella subcapitata [J]. Water Air and Soil Pollution, 2013, 224(1): 1357-1367.
[25] FRANKLIN N M, ADAMS M S, STAUBER J L, et al. Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry [J]. Archives of Environmental Contamination and Toxicology, 2001, 40(4): 469-480. doi: 10.1007/s002440010199
[26] LIU W, CHEN S, QUAN X, et al. Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry [J]. Environmental Toxicology and Chemistry, 2008, 27(7): 1597-1604. doi: 10.1897/07-459.1
[27] 岳文洁, 王朝晖, 王桥军, 等. 氯氰菊酯对海洋卡盾藻的毒性效应 [J]. 生态毒理学报, 2009, 4(2): 251-257. YUE W J, WANG Z H, WANG Q J, et al. Toxic effects of cypermethrin on chattonella marina [J]. Asian Journal of Ecotoxicology, 2009, 4(2): 251-257(in Chinese).
[28] CERUTTI P, LARSSON R, KRUPITZA G, et al. Pathophysiological mechanismsa of active oxygen [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 214(1): 81-88. doi: 10.1016/0027-5107(89)90200-5
[29] 谢荣, 唐学玺, 李永祺, 等. 丙溴磷影响海洋微藻生长机理的初步研究 [J]. 环境科学学报, 2000, 20(4): 473-477. doi: 10.3321/j.issn:0253-2468.2000.04.018 XIE R, TANG X X, LI Y Q, et al. Preliminary study on mechanism of profenofos on marine microalgae proliferation [J]. Acta Scientiae Circumstantiae, 2000, 20(4): 473-477(in Chinese). doi: 10.3321/j.issn:0253-2468.2000.04.018
[30] TSIAKA P, TSARPALI V, NTAIKOU I, et al. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis [J]. Ecotoxicology, 2013, 22(8): 1208-1220. doi: 10.1007/s10646-013-1108-3
[31] VAKIFAHMETOGLU-NORBERG H, OUCHIDA A T, NORBERG E. The role of mitochondria in metabolism and cell death [J]. Biochemical and Biophysical Research Communications, 2017, 482(3): 426-431. doi: 10.1016/j.bbrc.2016.11.088
[32] ZOROVA L D, POPKOV V A, PLOTNIKOV E Y, et al. Mitochondrial membrane potential [J]. Analytical Biochemistry, 2018, 552: 50-59. doi: 10.1016/j.ab.2017.07.009
[33] KORSHUNOV S S, SKULACHEV V P, STARKOV A A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria [J]. FEBS Letters, 1997, 416(1): 15-18. doi: 10.1016/S0014-5793(97)01159-9
[34] TAGUCHI G, UBUKATA T, NOZUE H, et al. Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco [J]. Plant Journal, 2010, 63(6): 1031-1041. doi: 10.1111/j.1365-313X.2010.04298.x
[35] MACHERIUS A, SEIWERT B, SCHROEDER P, et al. Identification of plant metabolites of environmental contaminants by UPLC-QToF-MS: The in vitro metabolism of triclosan in horseradish [J]. Journal of Agricultural and Food Chemistry, 2014, 62(5): 1001-1009. doi: 10.1021/jf404784q
[36] QU G B, LIU A F, THANH W, et al. Identification of tetrabromobisphenol A Allyl Ether and tetrabromobisphenol A 2, 3-dibromopropyl ether in the ambient environment near a manufacturing site and in mollusks at a coastal region [J]. Environmental Science & Technology, 2013, 47(9): 4760-4767.