-
四溴双酚A(tetrabromobisphenol A,TBBPA)是世界上生产和使用量最大的一种溴代阻燃剂,占溴代阻燃剂全球使用量的60%,被广泛用于塑料、纺织品和电子电气设备的生产[1]。研究发现TBBPA在表层土壤[2]、天然水体[3]、浮游动物和鱼类[4]、母乳[5]中广泛检出,在受到非单一点源污染的淡水水体(瑞典河流)中平均浓度为29 ng·L−1[6],而在污染严重的水体(中国巢湖)中浓度达到4870 ng·L−1[7]。已有研究发现TBBPA具有甲状腺激素[8]、性激素[9]等内分泌干扰作用和神经发育毒性[10],对水生生物的毒性效应尤为显著。正是由于TBBPA使用范围广、毒性作用强,致使人群暴露风险比较高,因此研究其环境行为和归趋,特别是在生物圈中的迁移、转化和代谢行为,有助于正确认识其在食物链中的行为以及对食物链造成的影响,从而正确评估与其相关的食品安全和环境与健康风险[11]。
植物是生物圈的重要组成部分,也是污染物从天然环境进入食物链,引起人类暴露风险的途径之一。单细胞藻类是研究污染物对水生生态系统影响的常见植物模型,其中普通小球藻(Chlorella vulgaris,C. vulgaris)作为一种典型的淡水微藻,已被用于2,4-二氯苯氧基乙酸[12]、氧化镍纳米颗粒[13]等污染物的风险评估。淡水藻对TBBPA(初始暴露浓度为0.8 μmol·L−1)生物转化的研究[14]表明月牙藻(Pseudokirchneriella subcapitata)、尖细栅藻(Scenedesmus acuminatus)、蛋白核小球藻(Chlorella pyrenoidosa)等6种淡水藻,在暴露7 d后使TBBPA发生明显生物转化,但TBBPA引起的藻类细胞生理变化的研究,特别是剂量-效应关系研究还比较欠缺。
鉴于微藻是含有光合色素的单细胞生物,因此是应用流式细胞检测技术开展研究的理想对象。本文将普通小球藻暴露于不同剂量的TBBPA后,测定了细胞增殖、色素合成等种群层面的指标变化,并利用流式细胞仪测定了酯酶活性[15]、线粒体膜电位[16]等细胞层面生理指标的时间变化,此外还通过定量测定母体化合物TBBPA,及其单糖基化产物TBBPA MG在培养液和藻细胞中的浓度变化考察了TBBPA的吸收和转化行为。通过探讨小球藻生理变化与其对TBBPA的吸收和转化行为之间的关联,研究了普通小球藻与TBBPA的交互作用,探究了小球藻经历TBBPA暴露后的解毒机制。
四溴双酚A与普通小球藻交互作用的时间剂量效应
Time- and dose-dependent interactions between tetrabromobisphenol A and microalgae (Chlorella vulgaris)
-
摘要: 溴代阻燃剂四溴双酚A(TBBPA)的大量使用导致其在环境中广泛检出,并在各种生物体内累积。本文探讨了水生生物普通小球藻(Chlorella vulgaris)暴露于不同剂量的TBBPA后,种群和细胞对该化合物的吸收、转化和应激响应的时间变化。结果表明,0.5、1.0、2.0 μmol·L−1 TBBPA暴露可以加快小球藻细胞增殖,促进色素合成。而小球藻的酯酶活性则表现为先受到抑制后出现回升,线粒体膜电位从超极化状态逐渐发生去极化。暴露的前3 d内(0—3 d)TBBPA含量未发生明显变化,但到第12天时,3种不同的暴露剂量下TBBPA的降解量占初始含量的67.95% ± 6.58%、68.17% ± 8.05%和68.05% ± 2.90%,降解率相当,即在本研究的剂量区间内TBBPA在普通小球藻作用下的降解率与其初始浓度无关。通过定量分析典型的转化产物TBBPA MG评估了TBBPA的转化过程,发现第5—7天TBBPA MG含量最高。小球藻对TBBPA的吸收和转化行为,与其生理指标的变化具有明显的关联,本研究结合小球藻的代谢行为和应激响应探究了其解毒机制。Abstract: The heavy use of the brominated flame retardant tetrabromobisphenol A (TBBPA) has led to its widespread occurrence in the environment and accumulation in various organisms. This study explored the absorption and transformation of TBBPA in Chlorella vulgaris and their responses to the stimuli. The results showed that TBBPA could accelerate the proliferation of C. vulgaris and promote pigment synthesis at concentrations of 0.5, 1.0 and 2.0 μmol·L−1. However, esterase activity of C. vulgaris were inhibited at first and then rebounded, and the mitochondrial membrane potential gradually depolarized from the hyperpolarized state. The contents of TBBPA in cells did not change within the first three days (0—3rd day) at concentrations of 0.5, 1.0 and 2.0 μmol·L−1, and 67.95% ± 6.58%, 68.17% ± 8.05%, and 68.05% ± 2.90% of TBBPA could be transformed at 12th day for three exposure doses, respectively. It indicated that the degradation rates of TBBPA in C. vulgaris at the doses range of this study did not related to their initial concentrations. TBBPA MG, a typical products of degradation, was utilized to quantitatively evaluate the biotic conversion process of TBBPA. It was found that the highest TBBPA MG contents were detected between 5th and 7th day. This study demonstrated that the absorption and transformation of TBBPA in C. vulgaris significantly correlated to its physiological conditions.
-
Key words:
- tetrabromobisphenol A /
- Chlorella vulgaris /
- interaction
-
表 1 HPLC流动相梯度洗脱程序
Table 1. HPLC mobile phase gradient elution program
程序
Program时间/min
Time甲醇/%
Methanol流速/(mL min−1)
Flow rate1 1 30 0.5 2 5 30 0.5 3 11 75 0.5 4 14 100 0.5 5 16 100 0.5 表 2 MS/MS仪器参数
Table 2. The parameters of Agilent 6460 Triple Quadrupole MS/MS system
参数 Parameters 条件 Conditions 载气温度 Gas Temperature 350 ℃ 喷雾器Nebulizer 50 psi 鞘气温度Sheath Gas Temperature 300 ℃ 鞘气流速 Sheath Gas Flow 11 L·min−1 毛细管电压Capillary Voltage 3500 V 喷嘴电压Nozzle Voltage 500 V 表 3 目标物质在HPLC-MS/MS上的MRM参数
Table 3. The parameters of MRM mode on an Agilent 1290 Series LC system coupled withan Agilent 6460 Triple Quadrupole LC-MS/MS system
化合物
Compounds母离子
Precursor ion(m/z)子离子
Product Ion(m/z)驻留时间/ms
Dwell碎裂电压/V
Fragment energy碰撞电压/V
Collision energyTBBPA 542.7 417.7 200 180 45 13C12-TBBPA 554.7 430.7 200 180 45 D10-TBBPA 552.7 424.7 200 180 45 TBBPA MG 704.8 542.7 200 220 34 -
[1] HOWARD P H, MUIR D C G. Identifying new persistent and bioaccumulative organics Among chemicals in commerce. Ⅲ: Byproducts, impurities, and transformation products [J]. Environmental Science & Technology, 2013, 47(10): 5259-5266. [2] GAO C J, XIA L L, WU C C, et al. The effects of prosperity indices and land use indicators of an urban conurbation on the occurrence of hexabromocyclododecanes and tetrabromobisphenol A in surface soil in South China [J]. Environmental Pollution, 2019, 252: 1810-1818. doi: 10.1016/j.envpol.2019.06.128 [3] FENG Y P, LU K, GAO S X, et al. The fate and transformation of tetrabromobisphenol A in natural waters, mediated by oxidoreductase enzymes [J]. Environmental Science-Processes & Impacts, 2017, 19(4): 596-604. [4] LIU A F, QU G B, YU M, et al. Tetrabromobisphenol-A/S and nine novel analogs in biological samples from the Chinese Bohai Sea: Implications for trophic transfer [J]. Environmental Science & Technology, 2016, 50(8): 4203-4211. [5] HUANG M R, LI J, XIAO Z X, et al. Tetrabromobisphenol A and hexabromocyclododecane isomers in breast milk from the general population in Beijing, China: Contamination levels, temporal trends, nursing infant's daily intake, and risk assessment [J]. Chemosphere, 2020: 244. doi: 10.1016/j.chemosphere.2019.125524 [6] GUSTAVSSON J, WIBERG K, RIBELI E, et al. Screening of organic flame retardants in Swedish river water [J]. Science of the Total Environment, 2018, 625: 1046-1055. doi: 10.1016/j.scitotenv.2017.12.281 [7] YANG S W, WANG S R, WU F C, et al. Tetrabromobisphenol A: tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China [J]. Environmental Science and Pollution Research, 2012, 19(9): 4090-4096. doi: 10.1007/s11356-012-1023-9 [8] GRASSELLI E, CORTESE K, FABBRI R, et al. Thyromimetic actions of tetrabromobisphenol A (TBBPA) in steatotic FaO rat hepatoma cells [J]. Chemosphere, 2014, 112: 511-518. doi: 10.1016/j.chemosphere.2014.03.114 [9] SHEIKH I A, BEG M A. Structural binding interactions of tetrabromobisphenol A with sex steroid nuclear receptors and sex hormone-binding globulin [J]. Journal of Applied Toxicology, 2020, 40(6): 832-842. doi: 10.1002/jat.3947 [10] ZHU B R, ZHAO G, YANG L H, et al. Tetrabromobisphenol A caused neurodevelopmental toxicity via disrupting thyroid hormones in zebrafish larvae [J]. Chemosphere, 2018, 197: 353-361. doi: 10.1016/j.chemosphere.2018.01.080 [11] LIU A F, ZHAO Z S, QU G B, et al. Transformation/degradation of tetrabromobisphenol A and its derivatives: A review of the metabolism and metabolites [J]. Environmental Pollution, 2018, 243: 1141-1153. doi: 10.1016/j.envpol.2018.09.068 [12] SAYGIDEGER S D, OKKAY Z. Effect of 2, 4-dichlorophenoxyacetic acid on growth, protein and chlorophyll-a content of Chlorella vulgaris and Spirulina platensis cells [J]. Journal of Environmental Biology, 2008, 29(2): 175-178. [13] GONG N, SHAO K S, CHE C, et al. Stability of nickel oxide nanoparticles and its influence on toxicity to marine algae Chlorella vulgaris [J]. Marine Pollution Bulletin, 2019, 149: 110532. doi: 10.1016/j.marpolbul.2019.1105327 [14] PENG F Q, YING G G, YANG B, et al. Biotransformation of the flame retardant tetrabromobisphen-A (TBBPA) by freshwater microalgae [J]. Environmental Toxicology and Chemistry, 2014, 33(8): 1705-1711. doi: 10.1002/etc.2589 [15] DEBENEST T, GAGNE F, PETIT A-N, et al. Monitoring of a flame retardant (tetrabromobisphenol A) toxicity on different microalgae assessed by flow cytometry [J]. Journal of Environmental Monitoring, 2010, 12(10): 1918-1923. doi: 10.1039/c0em00105h [16] ZHANG F, YE N, WANG S, et al. Dissolved organic matter modulates algal oxidative stress and membrane system responses to binary mixtures of nano-metal-oxides (nCeO2, nMgO and nFe3O4) and sulfadiazine [J]. Nanomaterials (Basel, Switzerland), 2019, 9(5): 712-723. doi: 10.3390/nano9050712 [17] HOU X W, YU M, LIU A F, et al. Glycosylation of tetrabromobisphenol A in pumpkin [J]. Environmental Science & Technology, 2019, 53(15): 8805-8812. [18] 王晓艳, 蒋凤华, 曹为, 等. 六溴环十二烷和四溴双酚A对4种海洋微藻的急性毒性 [J]. 海洋环境科学, 2013, 32(6): 831-835. WANG X Y, JIANG F H, CAO W, et al. Acute toxic effect of hexabromocyclododecane and tetrabromobisphenol A on four marine microalgae [J]. Marine Environmental Science, 2013, 32(6): 831-835(in Chinese).
[19] 彭浩. 环境及生物样品中溴代阻燃剂四溴双酚-A(TBBP-A)水平的研究[D]. 北京: 中央民族大学, 2007: 80. PENG H. Study on the level of brominated flame retardant tetrabromobisphenol A (TBBP-A) in environmental and biological samples[D] Beijing: Minzu University of China, 2007: 80 (in Chinese).
[20] LIU N, ZHANG H, ZHAO J F, et al. Mechanisms of cetyltrimethyl ammonium chloride-induced toxicity to photosystem Ⅱ oxygen evolution complex of Chlorella vulgaris F1068 [J]. Journal of Hazardous Materials, 2020, 383: 121063. doi: 10.1016/j.jhazmat.2019.121063 [21] XIONG J Q, KURADE M B, ABOU-SHANAB R A I, et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate [J]. Bioresource Technology, 2016, 205: 183-190. doi: 10.1016/j.biortech.2016.01.038 [22] PANCHA I, CHOKSHI K, MAURYA R, et al. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp CCNM 1077 [J]. Bioresource Technology, 2015, 189: 341-348. doi: 10.1016/j.biortech.2015.04.017 [23] JOCHEM F J. Probing the physiological state of phytoplankton at the single-cell level [J]. Scientia Marina, 2000, 64(2): 183-195. doi: 10.3989/scimar.2000.64n2183 [24] MACHADO M D, SOARES E V. Optimization of a Microplate-Based Assay to Assess Esterase Activity in the Alga Pseudokirchneriella subcapitata [J]. Water Air and Soil Pollution, 2013, 224(1): 1357-1367. [25] FRANKLIN N M, ADAMS M S, STAUBER J L, et al. Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry [J]. Archives of Environmental Contamination and Toxicology, 2001, 40(4): 469-480. doi: 10.1007/s002440010199 [26] LIU W, CHEN S, QUAN X, et al. Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry [J]. Environmental Toxicology and Chemistry, 2008, 27(7): 1597-1604. doi: 10.1897/07-459.1 [27] 岳文洁, 王朝晖, 王桥军, 等. 氯氰菊酯对海洋卡盾藻的毒性效应 [J]. 生态毒理学报, 2009, 4(2): 251-257. YUE W J, WANG Z H, WANG Q J, et al. Toxic effects of cypermethrin on chattonella marina [J]. Asian Journal of Ecotoxicology, 2009, 4(2): 251-257(in Chinese).
[28] CERUTTI P, LARSSON R, KRUPITZA G, et al. Pathophysiological mechanismsa of active oxygen [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1989, 214(1): 81-88. doi: 10.1016/0027-5107(89)90200-5 [29] 谢荣, 唐学玺, 李永祺, 等. 丙溴磷影响海洋微藻生长机理的初步研究 [J]. 环境科学学报, 2000, 20(4): 473-477. doi: 10.3321/j.issn:0253-2468.2000.04.018 XIE R, TANG X X, LI Y Q, et al. Preliminary study on mechanism of profenofos on marine microalgae proliferation [J]. Acta Scientiae Circumstantiae, 2000, 20(4): 473-477(in Chinese). doi: 10.3321/j.issn:0253-2468.2000.04.018
[30] TSIAKA P, TSARPALI V, NTAIKOU I, et al. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis [J]. Ecotoxicology, 2013, 22(8): 1208-1220. doi: 10.1007/s10646-013-1108-3 [31] VAKIFAHMETOGLU-NORBERG H, OUCHIDA A T, NORBERG E. The role of mitochondria in metabolism and cell death [J]. Biochemical and Biophysical Research Communications, 2017, 482(3): 426-431. doi: 10.1016/j.bbrc.2016.11.088 [32] ZOROVA L D, POPKOV V A, PLOTNIKOV E Y, et al. Mitochondrial membrane potential [J]. Analytical Biochemistry, 2018, 552: 50-59. doi: 10.1016/j.ab.2017.07.009 [33] KORSHUNOV S S, SKULACHEV V P, STARKOV A A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria [J]. FEBS Letters, 1997, 416(1): 15-18. doi: 10.1016/S0014-5793(97)01159-9 [34] TAGUCHI G, UBUKATA T, NOZUE H, et al. Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco [J]. Plant Journal, 2010, 63(6): 1031-1041. doi: 10.1111/j.1365-313X.2010.04298.x [35] MACHERIUS A, SEIWERT B, SCHROEDER P, et al. Identification of plant metabolites of environmental contaminants by UPLC-QToF-MS: The in vitro metabolism of triclosan in horseradish [J]. Journal of Agricultural and Food Chemistry, 2014, 62(5): 1001-1009. doi: 10.1021/jf404784q [36] QU G B, LIU A F, THANH W, et al. Identification of tetrabromobisphenol A Allyl Ether and tetrabromobisphenol A 2, 3-dibromopropyl ether in the ambient environment near a manufacturing site and in mollusks at a coastal region [J]. Environmental Science & Technology, 2013, 47(9): 4760-4767.