[1] BAEK S O, FIELD R A, GOLDSTONE M E, et al. A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior [J]. Water Air and Soil Pollution, 1991, 60(3-4): 279-300. doi: 10.1007/BF00282628
[2] KHALILI N R, SCHEFF P A, HOLSEN T M. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels and wood combustion emissions [J]. Atmospheric Environment, 1995, 29(4): 533-542. doi: 10.1016/1352-2310(94)00275-P
[3] 马超然, 张绪超, 王朋, 等. 生物炭理化性质对其反应活性的影响 [J]. 环境化学, 2019, 38(11): 2425-2434. MA C R, ZHANG X C, WANG P, et al. Effect of physical and chemical properties of biochar on its reactivity [J]. Environmental Chemistry, 2019, 38(11): 2425-2434(in Chinese).
[4] KLOSS S, ZEHETNER F, DELLANTONIO A, et al. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties [J]. Journal of Environmental Quality, 2012, 41(4): 990-1000. doi: 10.2134/jeq2011.0070
[5] HILBER I, BLUM F, LEIFELD J, et al. Quantitative determination of pahs in biochar: A prerequisite to ensure its quality and safe application [J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 3042-3050. doi: 10.1021/jf205278v
[6] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071
[7] KUSMIERZ M, OLESZCZUK P. Biochar production increases the polycyclic aromatic hydrocarbon content in surrounding soils and potential cancer risk [J]. Environmental Science and Pollution Research, 2014, 21(5): 3646-3652. doi: 10.1007/s11356-013-2334-1
[8] LIU W J, LI W W, JIANG H, et al. Fates of chemical elements in biomass during its pyrolysis [J]. Chemical Reviews, 2017, 117(9): 6367-6398. doi: 10.1021/acs.chemrev.6b00647
[9] WILLIAMS P T, WILLIAMS E A. Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock [J]. Journal of Analytical and Applied Pyrolysis, 1999, 51(1-2): 107-126. doi: 10.1016/S0165-2370(99)00011-X
[10] CUNLIFFE A M, WILLIAMS P T. Composition of oils derived from the batch pyrolysis of tyres [J]. Journal of Analytical and Applied Pyrolysis, 1998, 44(2): 131-152. doi: 10.1016/S0165-2370(97)00085-5
[11] KIM D H, MULHOLLAND J A, WANG D, et al. Pyrolytic hydrocarbon growth from cyclopentadiene [J]. Journal of Physical Chemistry A, 2010, 114(47): 12411-12416. doi: 10.1021/jp106749k
[12] FABBRI D, ROMBOLA A G, TORRI C, et al. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil [J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 60-67. doi: 10.1016/j.jaap.2012.10.003
[13] KEILUWEIT M, KLEBER M, SPARROW M A, et al. Solvent-extractable polycyclic aromatic hydrocarbons in biochar: Influence of pyrolysis temperature and feedstock [J]. Environmental Science & Technology, 2012, 46(17): 9333-9341.
[14] ZHAO L, ZHAO Y H, NAN H Y, et al. Suppressed formation of polycyclic aromatic hydrocarbons (PAHs) during pyrolytic production of Fe-enriched composite biochar [J]. Journal of Hazardous Materials, 2020, 382.
[15] VAN-TRUC N, THANH-BINH N, CHEN C W, et al. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground [J]. Bioresource Technology, 2019, 284: 197-203. doi: 10.1016/j.biortech.2019.03.096
[16] FAGERNAS L, KUOPPALA E, SIMELL P. Polycyclic aromatic hydrocarbons in birch wood slow pyrolysis products [J]. Energy & Fuels, 2012, 26(11): 6960-6970.
[17] 罗飞, 宋静, 陈梦舫. 油菜饼粕生物炭制备过程中多环芳烃的生成、分配及毒性特征 [J]. 农业环境科学学报, 2016, 35(11): 2210-2215. doi: 10.11654/jaes.2016-0529 LUO F, SONG J, CHEN M F. Generation, distribution and toxicity characteristics of polycyclic aromatic hydrocarbons during the preparation of biochar from rapeseed cake [J]. Journal of Agro-Environment Science, 2016, 35(11): 2210-2215(in Chinese). doi: 10.11654/jaes.2016-0529
[18] 李增波, 王聪颖, 蒋新, 等. 生物质炭中多环芳烃的潜在环境风险研究进展 [J]. 土壤学报, 2016, 53(6): 1357-1370. LI Z B, WANG C Y, JIANG X, et al. Environmental risk of polycyclic aromatic hydrocarbons(PAHs)in biochar [J]. Acta Pedologica Sinica, 2016, 53(6): 1357-1370(in Chinese).
[19] DE LA ROSA J M, SANCHEZ-MARTIN A M, CAMPOS P, et al. Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential [J]. Science of the Total Environment, 2019, 667: 578-585. doi: 10.1016/j.scitotenv.2019.02.421
[20] ZHANG G X, ZHAO Z H, GUO X F, et al. Levels of persistent toxic substances in different biochars and their potential ecological risk assessment [J]. Environmental Science and Pollution Research, 2018, 25(33): 33207-33215. doi: 10.1007/s11356-018-3280-8
[21] WEIDEMANN E, BUSS W, EDO M, et al. Influence of pyrolysis temperature and production unit on formation of selected PAHs, oxy-PAHs, N-PACs, PCDDs, and PCDFs in biochar-a screening study [J]. Environmental Science and Pollution Research, 2018, 25(4): 3933-3940. doi: 10.1007/s11356-017-0612-z
[22] DUNNIGAN L, MORTON B J, VAN EYK P J, et al. Polycyclic aromatic hydrocarbons on particulate matter emitted during the co-generation of bioenergy and biochar from rice husk [J]. Bioresource Technology, 2017, 244: 1015-1023. doi: 10.1016/j.biortech.2017.08.091
[23] FREDDO A, CAI C, REID B J. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar [J]. Environmental Pollution, 2012, 171: 18-24. doi: 10.1016/j.envpol.2012.07.009
[24] EUGENIA GONZALEZ M, ROMERO-HERMOSO L, GONZALEZ A, et al. Effects of pyrolysis conditions on physicochemical properties of oat hull derived biochar [J]. Bioresources, 2017, 12(1): 2040-2057.
[25] DEVI P, SAROHA A K. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge [J]. Bioresource Technology, 2015, 192: 312-320. doi: 10.1016/j.biortech.2015.05.084
[26] 邱良祝, 朱脩玥, 马彪, 等. 生物质炭热解炭化条件及其性质的文献分析 [J]. 植物营养与肥料学报, 2017, 23(6): 1622-1630. doi: 10.11674/zwyf.17031 QIU L Z, ZHU X Y, MA B, et al. Literature analysis on properties and pyrolyzing conditions of biochars [J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1622-1630(in Chinese). doi: 10.11674/zwyf.17031
[27] WANG C Y, WANG Y D, HERATH H. Polycyclic aromatic hydrocarbons (PAHs) in biochar - Their formation, occurrence and analysis: A review [J]. Organic Geochemistry, 2017, 114: 1-11. doi: 10.1016/j.orggeochem.2017.09.001
[28] BUSS W, GRAHAM M C, MACKINNON G, et al. Strategies for producing biochars with minimum PAH contamination [J]. Journal of Analytical and Applied Pyrolysis, 2016, 119: 24-30. doi: 10.1016/j.jaap.2016.04.001
[29] SUN H W, ZHOU Z L. Impacts of charcoal characteristics on sorption of polycyclic aromatic hydrocarbons [J]. Chemosphere, 2008, 71(11): 2113-2120. doi: 10.1016/j.chemosphere.2008.01.016
[30] ZIELINSKA A, OLESZCZUK P. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars [J]. Chemosphere, 2016, 153: 68-74. doi: 10.1016/j.chemosphere.2016.02.118
[31] SHARMA R K, WOOTEN J B, BALIGA V L, et al. Characterization of chars from pyrolysis of lignin [J]. Fuel, 2004, 83(11-12): 1469-1482. doi: 10.1016/j.fuel.2003.11.015
[32] SHARMA R K, HAJALIGOL M R. Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons (PAHs) from polyphenolic compounds [J]. Journal of Analytical and Applied Pyrolysis, 2003, 66(1-2): 123-144. doi: 10.1016/S0165-2370(02)00109-2
[33] GONDEK K, MIERZWA-HERSZTEK M, BARAN A, et al. The effect of low-temperature conversion of plant materials on the chemical composition and ecotoxicity of biochars [J]. Waste and Biomass Valorization, 2017, 8(3): 599-609. doi: 10.1007/s12649-016-9621-2
[34] QIU M Y, SUN K, JIN J, et al. Metal/metalloid elements and polycyclic aromatic hydrocarbon in various biochars: The effect of feedstock, temperature, minerals, and properties [J]. Environmental Pollution, 2015, 206: 298-305. doi: 10.1016/j.envpol.2015.07.026
[35] ROLLINSON A N. Gasification reactor engineering approach to understanding the formation of biochar properties [J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2016, 472(2192): 1-19.
[36] COLE D P, SMITH E A, LEE Y J. High-resolution mass spectrometric characterization of molecules on biochar from pyrolysis and gasification of switchgrass [J]. Energy & Fuels, 2012, 26(6): 3803-3809.
[37] DE LA ROSA J M, PANEQUE M, HILBER I, et al. Assessment of polycyclic aromatic hydrocarbons in biochar and biochar-amended agricultural soil from Southern Spain [J]. Journal of Soils and Sediments, 2016, 16(2): 557-565. doi: 10.1007/s11368-015-1250-z
[38] SCHIMMELPFENNIG S, GLASER B. One step forward toward characterization: some important material properties to distinguish biochars [J]. Journal of Environmental Quality, 2012, 41(4): 1001-1013. doi: 10.2134/jeq2011.0146
[39] KWON E E, OH J I, KIM K H. Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) mitigation in the pyrolysis process of waste tires using CO2 as a reaction medium [J]. Journal of Environmental Management, 2015, 160: 306-311.
[40] KWON E E, JEON Y J, YI H. New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2) [J]. Bioresource Technology, 2012, 123: 673-677. doi: 10.1016/j.biortech.2012.07.035
[41] GAO S P, ZHAO J T, WANG Z Q, et al. Effect of CO2 on pyrolysis behaviors of lignite [J]. Journal of Fuel Chemistry and Technology, 2013, 41(3): 257-264. doi: 10.1016/S1872-5813(13)60017-1
[42] KONCZAK M, GAO Y Z, OLESZCZUK P. Carbon dioxide as a carrier gas and biomass addition decrease the total and bioavailable polycyclic aromatic hydrocarbons in biochar produced from sewage sludge [J]. Chemosphere, 2019, 228: 26-34. doi: 10.1016/j.chemosphere.2019.04.029
[43] MADEJ J, HILBER I, BUCHELI T D, et al. Biochars with low polycyclic aromatic hydrocarbon concentrations achievable by pyrolysis under high carrier gas flows irrespective of oxygen content or feedstock [J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 365-369. doi: 10.1016/j.jaap.2016.09.005
[44] HILBER I, MAYER P, GOULIARMOU V, et al. Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons from (post-pyrolytically treated) biochars [J]. Chemosphere, 2017, 174: 700-707. doi: 10.1016/j.chemosphere.2017.02.014
[45] LI Y G, LIAO Y, HE Y, et al. Polycyclic aromatic hydrocarbons concentration in straw biochar with different particle size//[C]. LI J, DONG F. Selected Proceedings of the Tenth International Conference on Waste Management and Technology, 2016: 91-97.
[46] KOLTOWSKI M, OLESZCZUK P. Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment [J]. Ecological Engineering, 2015, 75: 79-85. doi: 10.1016/j.ecoleng.2014.11.004
[47] KHALID F N M, KLARUP D. The influence of sunlight and oxidative treatment on measured PAH concentrations in biochar [J]. Environmental Science and Pollution Research, 2015, 22(17): 12975-12981. doi: 10.1007/s11356-015-4469-8
[48] DUNNIGAN L, MORTON B J, HALL P A, et al. Production of biochar and bioenergy from rice husk: Influence of feedstock drying on particulate matter and the associated polycyclic aromatic hydrocarbon emissions [J]. Atmospheric Environment, 2018, 190: 218-225. doi: 10.1016/j.atmosenv.2018.07.028
[49] TSAI W T, MI H H, CHANG J H, et al. Levels of polycyclic aromatic hydrocarbons in the bio-oils from induction-heating pyrolysis of food-processing sewage sludges [J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 364-368. doi: 10.1016/j.jaap.2009.08.010
[50] NISBET I C T, LAGOY P K. Toxic equivalency factors (TEFs) for polycyclic aromatic-hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology, 1992, 16(3): 290-300. doi: 10.1016/0273-2300(92)90009-X
[51] VERSTRAETE W, DEVLIEGHER W. Formation of non-bioavailable organic residues in soil: Perspectives for site remediation [J]. Biodegradation, 1997, 7(6): 471-485. doi: 10.1007/BF00115294
[52] SEMPLE K T, DOICK K J, JONES K C, et al. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated [J]. Environmental Science & Technology, 2004, 38(12): 228A-231A.
[53] HARMSEN J, NAIDU R. Bioavailability as a tool in site management [J]. Journal of Hazardous Materials, 2013, 261: 840-846. doi: 10.1016/j.jhazmat.2012.12.044
[54] HALE S E, LEHMANN J, RUTHERFORD D, et al. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars [J]. Environmental Science & Technology, 2012, 46(5): 2830-2838.
[55] ROMBOLA A G, MARISI G, TORRI C, et al. Relationships between chemical characteristics and phytotoxicity of biochar from poultry litter pyrolysis [J]. Journal of Agricultural and Food Chemistry, 2015, 63(30): 6660-6667. doi: 10.1021/acs.jafc.5b01540
[56] ZHANG C, SHAN B Q, JIANG S X, et al. Effects of the pyrolysis temperature on the biotoxicity of phyllostachys pubescens biochar in the aquatic environment [J]. Journal of Hazardous Materials, 2019, 376: 48-57. doi: 10.1016/j.jhazmat.2019.05.010
[57] OLESZCZUK P, JOSKO I, KUSMIERZ M. Biochar properties regarding to contaminants content and ecotoxicological assessment [J]. Journal of Hazardous Materials, 2013, 260: 375-382. doi: 10.1016/j.jhazmat.2013.05.044
[58] YANG X, Ng W, Wong B S E, et al. Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: Effect of feedstock composition and pyrolysis conditions [J]. Journal of Hazardous Materials, 2019, 365: 178-185. doi: 10.1016/j.jhazmat.2018.10.047
[59] ANJUM R, KRAKAT N, REZA M T, et al. Assessment of mutagenic potential of pyrolysis biochars by Ames Salmonella/mammalian-microsomal mutagenicity test [J]. Ecotoxicology and Environmental Safety, 2014, 107: 306-312. doi: 10.1016/j.ecoenv.2014.06.005
[60] OLESZCZUK P, KOLTOWSKI M. Changes of total and freely dissolved polycyclic aromatic hydrocarbons and toxicity of biochars treated with various aging processes [J]. Environmental Pollution, 2018, 237: 65-73. doi: 10.1016/j.envpol.2018.01.073
[61] KUSMIERZ M, OLESZCZUK P, KRASKA P, et al. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil [J]. Chemosphere, 2016, 146: 272-279. doi: 10.1016/j.chemosphere.2015.12.010
[62] WANG J, XIA K, WAIGI M G, et al. Application of biochar to soils may result in plant contamination and human cancer risk due to exposure of polycyclic aromatic hydrocarbons [J]. Environment International, 2018, 121: 169-177. doi: 10.1016/j.envint.2018.09.010