[1] 樊正烈. 贵州钼矿地质特征及找矿前景 [J]. 贵州地质, 2006, 23(2): 103-108. doi: 10.3969/j.issn.1000-5943.2006.02.004 FAN Z L. Geologic characteristics and forecastin exploration of Molybdenum deposits in Guizhou Province [J]. Guizhou Geology, 2006, 23(2): 103-108(in Chinese). doi: 10.3969/j.issn.1000-5943.2006.02.004
[2] 徐金鸿, 徐瑞松. 钼及其植物生理生态效应 [J]. 广东微量元素科学, 2005, 12(2): 11-14. doi: 10.3969/j.issn.1006-446X.2005.02.003 XU J H, XU R S. Physiologcal and ecological effects on molybdenum in plant [J]. Guangdong Trace Elements Science, 2005, 12(2): 11-14(in Chinese). doi: 10.3969/j.issn.1006-446X.2005.02.003
[3] 杨自军, 龙塔, 冉林武, 等. 钼的生物学功能及其在动物生产中的作用 [J]. 河南科技大学学报(农学版), 2004, 24(2): 40-43. YANG Z J, LONG T, RAN L W, et al. Molybdenum’s biological function and roles in animal production [J]. Journal of Henan University of Science and Technology(Agricultural Science), 2004, 24(2): 40-43(in Chinese).
[4] ESMAEILI A, MOORE F, KESHAVARZI B, et al. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran [J]. Catena, 2014, 121: 88-98. doi: 10.1016/j.catena.2014.05.003
[5] DURUIBE J O, OGWUEGBU M O C. Heavy metal pollution and human biotoxic effects [J]. International Journal of Physical Sciences, 2007, 2(5): 112-118.
[6] KUANG J L, HUANG L N, CHEN L X, et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage [J]. ISME Journal, 2013, 7(5): 1038-1050. doi: 10.1038/ismej.2012.139
[7] MERIEM L, BOUAMAR B, HASSAN E H, et al. Phytoremediation mechanisms of heavy metal contaminated soils: A review [J]. Open Journal of Ecology, 2015, 5: 375-388. doi: 10.4236/oje.2015.58031
[8] SUN Z, CHEN J J, WANG X W, et al. Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of northern China [J]. Ecological Engineering, 2016, 86: 60-68. doi: 10.1016/j.ecoleng.2015.10.023
[9] 韩存亮, 黄泽宏, 肖荣波, 等. 粤北某矿区周边镉锌污染稻田土壤田间植物修复研究 [J]. 生态环境学报, 2018, 27(1): 158-165. HAN C L, HUANG Z H, XIAO R B, et al. Field phytoremediation of cadmium and zinc contaminated paddy soil around a mining area in northern guangdong provincec [J]. Ecology and Environmental Sciences, 2018, 27(1): 158-165(in Chinese).
[10] ROBINSIN B H, MILLS T M, PETIT D, et al. Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation [J]. Plant and Soil, 2000, 227: 301-306. doi: 10.1023/A:1026515007319
[11] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives [J]. Chemosphere, 2017, 171: 710-721. doi: 10.1016/j.chemosphere.2016.12.116
[12] KOBRA M, SEYED M G, MASOUD T M. Accumulation and phytoremediation of Pb, Zn and Ag by plants growing on Koshk lead-zinc mining area, Iran [J]. Journal of Soils and Sediments, 2017, 5(17): 1310-1320.
[13] SASMAZ A, SASMAZ M. The phytoremediation potential for strontium of indigenous plants growing in a mining area [J]. Environmental and Experimental Botany, 2009, 67(1): 139-144. doi: 10.1016/j.envexpbot.2009.06.014
[14] 刘胜洪, 张雅君, 杨妙贤, 等. 稀土尾矿区土壤重金属污染与优势植物累积特征 [J]. 生态环境学报, 2014, 23(6): 1042-1045. doi: 10.3969/j.issn.1674-5906.2014.06.021 LIU S H, ZHANG Y J, YANG M X, et al. Heavy metal contamination of soil and concentration of dom inant plants in rare earth mine tailing area [J]. Ecology and Environmental Sciences, 2014, 23(6): 1042-1045(in Chinese). doi: 10.3969/j.issn.1674-5906.2014.06.021
[15] 叶文玲, 陈增, 徐晓燕. 铜陵铜尾矿库优势植物对重金属富集特征研究 [J]. 环境科学与技术, 2015, 38(5): 11-20. YE W L, CHEN Z, XU X Y. Heavy metal contents and enrichment characteristics of dominant plants in copper mine tailings in Tongling of Anhui Province [J]. Environmental Science and Technology, 2015, 38(5): 11-20(in Chinese).
[16] 陈岩, 季宏兵, 朱先芳, 等. 北京市得田沟金矿和崎峰茶金矿周边土壤重金属形态分析和潜在风险评价 [J]. 农业环境科学学报, 2012, 31(11): 2142-2151. CHEN Y, JI H B, ZHU X F, et al. Fraction distribution and risk assessment of Heavy Metals in soils around the gold mine of Detiangou-Qifengcha, Beijingcity, China [J]. Journal of Agro-Environment Science, 2012, 31(11): 2142-2151(in Chinese).
[17] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. Central Station of Environmental Monitoring of China. Background Values of Soil Elements in China[M]. Beijing: China Environmental Science Press, 1990(in Chinese).
[18] 谷雨, 蒋平, 谭丽, 等. 6种植物对土壤中镉的富集特征研究 [J]. 中国农学通报, 2019, 35(30): 119-123. doi: 10.11924/j.issn.1000-6850.casb18050032 GU Y, JIANG P, TAN L, et al. Enrichment characteristics of cadmium by six plants in soil [J]. Chinese Agricultural Science Bulletin, 2019, 35(30): 119-123(in Chinese). doi: 10.11924/j.issn.1000-6850.casb18050032
[19] 刘亚峰, 龙胜桥, 邵树勋. 碎米荠对硒、镉超富集特性研究 [J]. 地球与环境, 2018, 46(2): 173-178. LIU Y F, LONG S Q, SHAO S X. A study on hyperaccumulation of Se and Cd in Cardamine violifolia [J]. Earth and Environment, 2018, 46(2): 173-178(in Chinese).
[20] 马先杰, 陆凤, 陈兰兰, 等. 贵州水城典型铅锌矿区土壤和蔬菜中重金属累积特征及风险评价 [J]. 环境污染与防治, 2019, 41(10): 1227-1232. MA X J, LU F, CHEN L L, et al. Accumulation characteristics and risk assessment for heavy metals in soil and vegetables in typical lead-zinc mining region of Shuicheng, Guizhou [J]. Environmental Pollution&Control, 2019, 41(10): 1227-1232(in Chinese).
[21] 张迪, 周明忠, 熊康宁, 等. 贵州遵义松林Ni-Mo多金属矿区土壤Mo污染及农作物健康风险初步评价 [J]. 环境化学, 2019, 38(6): 1328-1338. doi: 10.7524/j.issn.0254-6108.2018081101 ZHANG D, ZHOU M Z, XIONG K N, et al. Preliminary risk assessment of molybdenum in the soils and crops around the Ni-Mo polymetallic mining area in SongLin, Zunyi, China [J]. Environmental Chemistry, 2019, 38(6): 1328-1338(in Chinese). doi: 10.7524/j.issn.0254-6108.2018081101
[22] 李俊凯, 张丹, 周培, 等. 南京市铅锌矿采矿场土壤重金属污染评价及优势植物重金属富集特征 [J]. 环境科学, 2018, 39(8): 3845-3853. LI J K, ZHANG D, ZHOU P, et al. Assessment of heavy metal pollution in soil and its bioaccumulation by dominant plants in a lead-zinc mining area, Nanjing [J]. Environmental Science, 2018, 39(8): 3845-3853(in Chinese).
[23] 何东, 邱波, 彭尽晖, 等. 湖南下水湾铅锌尾矿库优势植物重金属含量及富集特征 [J]. 环境科学, 2013, 34(9): 3595-3600. HE D, QIU B, PENG J H, et al. Heavy metal contents and enrichment characteristics of dominant plants in a lead-zinc tailings in Xiashuiwan of Hunan Province [J]. Environmental Science, 2013, 34(9): 3595-3600(in Chinese).
[24] BAKER A J M, BROOKS R R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry [J]. Biorecovery, 1989, 1: 81-126.
[25] 方维萱, 兀鹏武, 左建莉, 等. 硒、钼、钒污染环境的生态地球化学修复物种筛选与展望 [J]. 矿物岩石球化学通报, 2005, 24(3): 222-231. FANG W X, WU P W, ZUO J L, et al. Selection of plant species for ecologically geochemical phytorem ediation of the environments polluted by selenium, molybdenum and vanadium and its perspectives [J]. Bulletin of Mineralogy Petrology and Geochemistry, 2005, 24(3): 222-231(in Chinese).
[26] 徐华伟, 张仁陟, 谢永. 铅锌矿区先锋植物野艾蒿对重金属的吸收与富集特征 [J]. 农业环境科学学报, 2009, 28(6): 1136-1141. doi: 10.3321/j.issn:1672-2043.2009.06.008 XU H W, ZHANG R Z, XIE Y. Accumulation and distribution of heavy metals in Artemisia lavandulaefolia at lead-zinc mining area [J]. Journal of Agro-Enviromnent Science, 2009, 28(6): 1136-1141(in Chinese). doi: 10.3321/j.issn:1672-2043.2009.06.008
[27] 张龙, 张云霞, 宋波, 等. 云南兰坪铅锌矿区优势植物重金属富集特性及应用潜力 [J]. 环境科学, 2020, 41(9): 4210-4217. doi: 10.13227/j.hjkx.202001019 ZHANG l, ZHANG Y X, SONG B, et al. Potential of accumulation and application of dominant plants in Lanping Lead-zinc Mine, Yunnan Province [J]. Environmental Science, 2020, 41(9): 4210-4217(in Chinese). doi: 10.13227/j.hjkx.202001019
[28] 杨贤均, 刘可慧, 刘华, 等. 锰污染对酸模叶蓼生长、锰吸收及抗氧化物活性的影响 [J]. 植物科学学报, 2016, 34(6): 926-933. doi: 10.11913/PSJ.2095-0837.2016.60926 YANG X J, LIU K H, LIU H, et al. Effects of manganese contamination on the growth, Mn accumulation and antioxidants of Polygonum lapathifolium Linn [J]. Plant Science Journal, 2016, 34(6): 926-933(in Chinese). doi: 10.11913/PSJ.2095-0837.2016.60926
[29] 罗为桂, 刘四喜, 段海风, 等. 普通商陆耐锰特性研究及除锰能力评估 [J]. 湖南农业科学, 2012, 23: 42-44. doi: 10.3969/j.issn.1006-060X.2012.01.013 LUO W G, LIU S X, DUAN H F, et al. Characteristics of manganese tolerance of normal Phytolacca acinosa roxb. and its capacity of removing manganese from soil [J]. Hunan Agricultural Sciences, 2012, 23: 42-44(in Chinese). doi: 10.3969/j.issn.1006-060X.2012.01.013
[30] 王学锋, 陈亚青, 马鑫, 等. 某工业区排污河道周边植物重金属富集特征 [J]. 环境科学与技术, 2013, 36(1): 74-78. doi: 10.3969/j.issn.1003-6504.2013.01.017 WANG X F, CHEN Y Q, MA X, et al. Heavy metal in plants around drainage waterway of an industrial zone: characteristics of absorption and accumulation [J]. Environmental Science & Technology, 2013, 36(1): 74-78(in Chinese). doi: 10.3969/j.issn.1003-6504.2013.01.017
[31] 甘龙, 罗玉红, 李晓玲, 等. Cd胁迫下一年蓬的生长、Cd积累及叶绿素荧光特性 [J]. 武汉大学学报(理学版), 2018, 64(1): 70-78. GAN L, LUO Y H, LI X L, et al. Growth, Cd accumulation, and chlorophyll fluorescence characteristic of Erigeron annuus under Cd stress [J]. Journal of Wuhan University(Natural Science Edition), 2018, 64(1): 70-78(in Chinese).
[32] 宋清海, 蔡信德, 吴颖欣, 等. 香根草对污染土壤水溶态重金属组分胁迫响应研究 [J]. 农业环境科学学报, 2019, 38(12): 2715-2722. doi: 10.11654/jaes.2019-1048 SONG Q H, CAI X D, WU Y X, et al. Response of Vetiveria zizanioides to the stress of water-soluble components of heavy metals in contaminated soil [J]. Journal of Agro-Environment Science, 2019, 38(12): 2715-2722(in Chinese). doi: 10.11654/jaes.2019-1048
[33] 陆金, 赵兴青, 黄健, 等. 铜陵狮子山矿区尾矿库及周边17种乡土植物重金属含量及富集特征 [J]. 环境化学, 2019, 38(1): 78-86. doi: 10.7524/j.issn.0254-6108.2018021302 LU J, ZHAO X Q, HUANG J, et al. Heavy metal contents and enrichment characteristics of 17 species indigenous plants in the tailing surrounding in Shizishan, Tongling [J]. Environmental Chemistry, 2019, 38(1): 78-86(in Chinese). doi: 10.7524/j.issn.0254-6108.2018021302
[34] TANG Y T, QIU R L, ZENG X W, et al. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch [J]. Environmental and Experimental Botany, 2009, 66(1): 126-134. doi: 10.1016/j.envexpbot.2008.12.016
[35] 陈昌东, 张安宁, 腊明, 等. 平顶山矿区矸石山周边土壤重金属污染及优势植物富集特征 [J]. 生态环境学报, 2019, 28(6): 1216-1223. CHEN C D, ZHANG A N, LA M, et al. Soil heavy metal contamination and enrichment of dominant plants in coal waste piles in Pingdingshan area [J]. Ecology and Environmental Sciences, 2019, 28(6): 1216-1223(in Chinese).
[36] 陈勤, 沈羽, 方炎明, 等. 紫湖溪流域重金属污染风险与植物富集特征 [J]. 农业工程学报, 2014, 30(14): 198-205. doi: 10.3969/j.issn.1002-6819.2014.14.025 CHEN Q, SHEN Y, FANG Y M, et al. Heavy metals pollution risk and characteristics of plant accumulation along Zihu River [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14): 198-205(in Chinese). doi: 10.3969/j.issn.1002-6819.2014.14.025
[37] 谭立敏, 李科林, 李顺. 株洲霞湾港域乡土植物及其根际土壤重金属蓄积特性 [J]. 水土保持学报, 2013, 27(4): 161-165. TAN L M, LI K L, LI S. Accumulation characteristics of heavy metals in native plants and rhizosphere soil at Harbor Area in Zhuzhou [J]. Journal of Soil and Water Conservation, 2013, 27(4): 161-165(in Chinese).
[38] 黄小娟, 江长胜, 郝庆菊. 重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征 [J]. 生态学报, 2014, 34(15): 4201-4211. HUANG X J, JIANG C H, HAO Q J. Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi Manganese mineland of Chongqing [J]. Acta Ecologica Sinica, 2014, 34(15): 4201-4211(in Chinese).
[39] VACULIK M, KONLECHNER C, LANGER I, et al. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities [J]. Environmental Pollution, 2012, 163: 117-126. doi: 10.1016/j.envpol.2011.12.031