-
贵州省的生态资源与矿产资源蕴藏丰富,尤以中北部成为稀有金属钼镍矿的主要分布区域[1],储量巨大,如遵义毛石即是典型的钼镍硫化物金属矿层,以王见山脉为主线形成钼矿的富集开采区。由于钼不是普遍性的土壤污染物[2-3],国内外关于钼在土壤和植物中形态累积及毒性研究较少,但钼矿与多种重金属具有伴生性,易形成更为严重的重金属综合性污染。经实地勘查、走访显示,该区域多数钼矿洞虽已处于禁采状态,但矿区未经修复,大面积矿层露天裸露,且尾渣堆无序堆积,部分垮塌,对周边土壤、水域、植被造成巨大的环境污染风险[4-6]。可见,钼矿尾库重金属污染已成为当地水土安全与生态保持的主要隐患,如何修复钼矿尾库区土壤与周边环境重金属污染是目前亟待解决的环境问题。
植物修复作为一种绿色原位土壤修复技术,其成本低、无二次污染,兼顾美观与实用意义,成为矿区重金属污染土壤修复普遍采用的技术之一[7-9]。超富集植物概念[10]的引入使国内外学者致力于寻找适用污染修复的各类先锋植物,目前,以筛选环境友好型、耐性高、富集量大以及易于大面积推广的特征植物作为研究热点[11]。Kobra等[12]以某铅锌矿区40种本土优势植物作为重金属富集研究对象,结果发现芹叶牻牛儿苗(Erodium cicutarium)和欧薄荷(Mentha longifolia)对Pb和Zn具有稳定富集特征、绒藜(Londesia eriantha)、扁柄草(Lallemantia royleana)和旱雀麦(Bromus tectorum)对伴生金属Ag具有高浓度富集量,均可作为重金属超富集稳定化提取物种;Sasmaz等[13]研究了Keban锶矿区优势植物对Sr的累积和迁移特征,结果显示大戟(Euphorbia macroclada)、毛蕊花(Verbascum cheiranthifolium)和黄芪(Astragalus gummifer)的芽和根中锶的富集因子均超过或接近1,可以成为Sr的高效生物蓄积植被用于污染土壤修复;刘胜洪等[14]对广东下车镇某稀土矿区土壤及优势植物重金属富集特征进行了分析,认为马唐草((Digitaria sanguinalis)和望江南(Cassia occidentalis)对Mn和Zn的生物富集和转移系数均大于1,是Mn和Zn的超富集植物;叶文玲等[15]研究了安徽铜陵石灰窑和相思谷尾矿区土壤及14种优势植物的重金属转移和富集特征,结果表明续断菊(Sonchus asper)对Cd的转移和富集能力突出,在Cu、Zn、Cd含量比较高的尾矿区,可以选用苏槐蓝(Indigofera carlesii Craib)、续断菊(Sonchus asper)、苦卖菜(Ixeris chinensis)和巢菜(Vicia sepium L.)等4种乡土优势植物作为耐性植物联合种植。综上可见,目前对稀有难熔金属(如钼、钛、钒和铌等)矿区先锋植物的特征研究甚少,筛选该类矿区优势本土先锋植物对尾矿区重金属污染修复具有重要意义。
因此,本研究以黔北毛石镇钼矿区土壤和主要优势植物作为研究对象,分析评价该地区土壤重金属污染状况,考察植物对重金属的富集能力和耐性,旨在筛选出适应性、推广性强,并对多种重金属伴生复合型污染土壤有较高耐性和修复能力的优势先锋植物,以期为该地区生态修复提供科学依据。
黔北典型钼矿尾库区优势植物重金属富集特征
Heavy metal enrichment in dominant plant species growing in the molybdenum mining tailings area in north Guizhou Province
-
摘要: 为筛选出适应钼矿区生态修复的先锋植物,测定了黔北毛石镇钼矿区土壤及14种优势植物地上部和根部中Mo、Pb、Cd、Cu、Cr、Mn和Zn含量,并对比分析了优势植物对重金属元素的吸收、富集和转移特征。结果表明,钼矿区周边土壤Mo、Cu、Cd、Zn存在严重污染,单因子污染指数分别为26.71、12.90、2.36和2.87,内梅罗综合污染指数达19.48,远超重度污染水平限值,表现为Mo-Cu-Cd-Zn的复合污染;14种优势植物对Cd的生物富集系数均大于1,含量均超出植物正常范围;野艾蒿(Artemisia lavandulaefolia)、一年蓬(Erigeron annuus)和倒提壶(Cynoglossum amabile)对Cu、Cr、Zn的富集含量最高,Mn在酸模叶蓼(Polygonum lapathifolium)地上部的富集系数值大于1,小蓬草(Conyza Canadensis)和土荆芥(Chenopodium ambrosioides)根部中Mo的富集含量接近超富集临界值,蛇葡萄(Ampelopsis glandulosa)、野艾蒿(A. lavandulaefolia)、毛连菜(Picris hieracioides)和倒提壶(C. amabile)对Mo、Pb、Cd、Cu和Mn的生物转移系数均大于1,体现出在钼矿区潜在的修复应用价值。Abstract: In order to select the pioneer plants for ecosystem restoration in the molybdenum mining area, concentrations of Mo, Pb, Cd, Cu, Cr, Mn, and Zn in soils and the aboveground parts and root of 14 dominant plant species from the Maoshi molybdenum mining area in north Guizhou were measured, and the bioaccumulation and translocation of heavy metals by different plants were compared and analyzed. The results showed that Mo, Cu, Cd and Zn in soils were extremely contaminated, with the single pollution index of 26.71, 12.90, 2.36, and 2.87, respectively, and the Nemerow index of 19.48, indicating a heavily contaminated status with a compound pollution of Mo-Cu-Cd-Zn. The bioconcentration factors (BCF) of Cd in 14 dominant plant species were all exceed 1 and the Cd concentrations in these plants were beyond the normal range. Concentrations of Cu, Cr and Zn were highest in Artemisia lavandulaefolia, Erigeron annuus and Cynoglossum amabile. The bioconcentration coefficient of Mn in the aboveground part of Polygonum lapathifolium was larger than 1. Concentration of Mo in roots of Conyza Canadensis and Chenopodium ambrosioides were close to the critical value of hyperaccumulation. The biological transfer factors (BTF) of Mo, Pb, Cd, Cu and Mn for Ampelopsis glandulosa, A. lavandulaefolia, Picris hieracioides and C. amabile were all beyond 1, suggesting their potential application value in the ecosystem restoration of the molybdenum mining area.
-
表 1 研究区优势植物种类
Table 1. Dominant plant species in the study area
科
Family属
Genus种
Species菊科 白酒草属 小蓬草(Conyza canadensis) 香丝草(Conyza bonariensis) 蒿属 野艾蒿(Artemisia lavandulaefolia) 毛连菜属 毛连菜(Picris hieracioides) 飞蓬属 一年蓬(Erigeron annuus) 禾本科 穇属 牛筋草(Eleusine indica) 芒属 芒草(Miscanthus sinensis) 金星蕨科 毛蕨属 毛蕨(Cyclosorus interruptus) 蓼科 蓼属 酸模叶蓼(Polygonum lapathifolium) 葡萄科 葡萄属 蛇葡萄(Ampelopsis glandulosa) 姬蕨科 姬蕨属 姬蕨(Hypolepis punctata) 商陆科 商陆属 商陆(Phytolacca acinosa) 紫草科 琉璃草属 倒提壶(Cynoglossum amabile) 藜科 藜属 土荆芥(Chenopodium ambrosioides) 表 2 样地土壤重金属含量及污染指数
Table 2. Concentration of heavy metals in soils and the pollution index
项目
ItemsMo Pb Cd Cu Cr Mn Zn 含量范围/
(mg·kg−1)23.35—206.2 14.54—59.81 0.03—7.27 333.70—483.86 15.00—79.05 97.48—1509.38 97.15—716.30 平均/(mg·kg−1) 64.11 33.39 1.56 412.76 47.55 604.44 285.17 贵州土壤背景/
(mg·kg−1)2.4 35.2 0.66 32.0 95.9 794 99.5 平均超标倍数 25.71 NE 1.36 11.90 NE NE 1.87 单因子污染指数 26.71 0.95 2.36 12.90 0.50 0.76 2.87 内梅罗综合污染指数 19.48 注:平均超标倍数=(平均值-评价标准值)/评价标准值;NE 表示未超标.
Note: Average over-standard multiple = (average value - standard value)/standard value; NE means not exceeding the standard.表 3 优势植物对不同重金属的耐性分类
Table 3. Classification of the tolerance of the dominant plant species for heavy metals
Mo Pb Cd Cu Cr Mn Zn 毛蕨 F F F T T F F 酸模叶蓼 T T F F T F F 蛇葡萄 F F F F F F F 小蓬草 T T F T T F F 姬蕨 F T F F T F F 商陆 F F F F F F F 芒草 T T F F T F F 香丝草 F T F T T F F 土荆芥 T F F F F F F 牛筋草 F T F T F T T 野艾蒿 F F F F F F F 毛连菜 F F F T F T F 一年蓬 F F T T T F F 倒提壶 F F F F T F T 注:“F”代表相应金属的富集型植被;“T”代表相应金属的根部囤积型植被.
Note: “F” stands for the enriched vegetation of the corresponding metal; “T” stands for the rooted vegetation of the corresponding metal. -
[1] 樊正烈. 贵州钼矿地质特征及找矿前景 [J]. 贵州地质, 2006, 23(2): 103-108. doi: 10.3969/j.issn.1000-5943.2006.02.004 FAN Z L. Geologic characteristics and forecastin exploration of Molybdenum deposits in Guizhou Province [J]. Guizhou Geology, 2006, 23(2): 103-108(in Chinese). doi: 10.3969/j.issn.1000-5943.2006.02.004
[2] 徐金鸿, 徐瑞松. 钼及其植物生理生态效应 [J]. 广东微量元素科学, 2005, 12(2): 11-14. doi: 10.3969/j.issn.1006-446X.2005.02.003 XU J H, XU R S. Physiologcal and ecological effects on molybdenum in plant [J]. Guangdong Trace Elements Science, 2005, 12(2): 11-14(in Chinese). doi: 10.3969/j.issn.1006-446X.2005.02.003
[3] 杨自军, 龙塔, 冉林武, 等. 钼的生物学功能及其在动物生产中的作用 [J]. 河南科技大学学报(农学版), 2004, 24(2): 40-43. YANG Z J, LONG T, RAN L W, et al. Molybdenum’s biological function and roles in animal production [J]. Journal of Henan University of Science and Technology(Agricultural Science), 2004, 24(2): 40-43(in Chinese).
[4] ESMAEILI A, MOORE F, KESHAVARZI B, et al. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran [J]. Catena, 2014, 121: 88-98. doi: 10.1016/j.catena.2014.05.003 [5] DURUIBE J O, OGWUEGBU M O C. Heavy metal pollution and human biotoxic effects [J]. International Journal of Physical Sciences, 2007, 2(5): 112-118. [6] KUANG J L, HUANG L N, CHEN L X, et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage [J]. ISME Journal, 2013, 7(5): 1038-1050. doi: 10.1038/ismej.2012.139 [7] MERIEM L, BOUAMAR B, HASSAN E H, et al. Phytoremediation mechanisms of heavy metal contaminated soils: A review [J]. Open Journal of Ecology, 2015, 5: 375-388. doi: 10.4236/oje.2015.58031 [8] SUN Z, CHEN J J, WANG X W, et al. Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of northern China [J]. Ecological Engineering, 2016, 86: 60-68. doi: 10.1016/j.ecoleng.2015.10.023 [9] 韩存亮, 黄泽宏, 肖荣波, 等. 粤北某矿区周边镉锌污染稻田土壤田间植物修复研究 [J]. 生态环境学报, 2018, 27(1): 158-165. HAN C L, HUANG Z H, XIAO R B, et al. Field phytoremediation of cadmium and zinc contaminated paddy soil around a mining area in northern guangdong provincec [J]. Ecology and Environmental Sciences, 2018, 27(1): 158-165(in Chinese).
[10] ROBINSIN B H, MILLS T M, PETIT D, et al. Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation [J]. Plant and Soil, 2000, 227: 301-306. doi: 10.1023/A:1026515007319 [11] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives [J]. Chemosphere, 2017, 171: 710-721. doi: 10.1016/j.chemosphere.2016.12.116 [12] KOBRA M, SEYED M G, MASOUD T M. Accumulation and phytoremediation of Pb, Zn and Ag by plants growing on Koshk lead-zinc mining area, Iran [J]. Journal of Soils and Sediments, 2017, 5(17): 1310-1320. [13] SASMAZ A, SASMAZ M. The phytoremediation potential for strontium of indigenous plants growing in a mining area [J]. Environmental and Experimental Botany, 2009, 67(1): 139-144. doi: 10.1016/j.envexpbot.2009.06.014 [14] 刘胜洪, 张雅君, 杨妙贤, 等. 稀土尾矿区土壤重金属污染与优势植物累积特征 [J]. 生态环境学报, 2014, 23(6): 1042-1045. doi: 10.3969/j.issn.1674-5906.2014.06.021 LIU S H, ZHANG Y J, YANG M X, et al. Heavy metal contamination of soil and concentration of dom inant plants in rare earth mine tailing area [J]. Ecology and Environmental Sciences, 2014, 23(6): 1042-1045(in Chinese). doi: 10.3969/j.issn.1674-5906.2014.06.021
[15] 叶文玲, 陈增, 徐晓燕. 铜陵铜尾矿库优势植物对重金属富集特征研究 [J]. 环境科学与技术, 2015, 38(5): 11-20. YE W L, CHEN Z, XU X Y. Heavy metal contents and enrichment characteristics of dominant plants in copper mine tailings in Tongling of Anhui Province [J]. Environmental Science and Technology, 2015, 38(5): 11-20(in Chinese).
[16] 陈岩, 季宏兵, 朱先芳, 等. 北京市得田沟金矿和崎峰茶金矿周边土壤重金属形态分析和潜在风险评价 [J]. 农业环境科学学报, 2012, 31(11): 2142-2151. CHEN Y, JI H B, ZHU X F, et al. Fraction distribution and risk assessment of Heavy Metals in soils around the gold mine of Detiangou-Qifengcha, Beijingcity, China [J]. Journal of Agro-Environment Science, 2012, 31(11): 2142-2151(in Chinese).
[17] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. Central Station of Environmental Monitoring of China. Background Values of Soil Elements in China[M]. Beijing: China Environmental Science Press, 1990(in Chinese).
[18] 谷雨, 蒋平, 谭丽, 等. 6种植物对土壤中镉的富集特征研究 [J]. 中国农学通报, 2019, 35(30): 119-123. doi: 10.11924/j.issn.1000-6850.casb18050032 GU Y, JIANG P, TAN L, et al. Enrichment characteristics of cadmium by six plants in soil [J]. Chinese Agricultural Science Bulletin, 2019, 35(30): 119-123(in Chinese). doi: 10.11924/j.issn.1000-6850.casb18050032
[19] 刘亚峰, 龙胜桥, 邵树勋. 碎米荠对硒、镉超富集特性研究 [J]. 地球与环境, 2018, 46(2): 173-178. LIU Y F, LONG S Q, SHAO S X. A study on hyperaccumulation of Se and Cd in Cardamine violifolia [J]. Earth and Environment, 2018, 46(2): 173-178(in Chinese).
[20] 马先杰, 陆凤, 陈兰兰, 等. 贵州水城典型铅锌矿区土壤和蔬菜中重金属累积特征及风险评价 [J]. 环境污染与防治, 2019, 41(10): 1227-1232. MA X J, LU F, CHEN L L, et al. Accumulation characteristics and risk assessment for heavy metals in soil and vegetables in typical lead-zinc mining region of Shuicheng, Guizhou [J]. Environmental Pollution&Control, 2019, 41(10): 1227-1232(in Chinese).
[21] 张迪, 周明忠, 熊康宁, 等. 贵州遵义松林Ni-Mo多金属矿区土壤Mo污染及农作物健康风险初步评价 [J]. 环境化学, 2019, 38(6): 1328-1338. doi: 10.7524/j.issn.0254-6108.2018081101 ZHANG D, ZHOU M Z, XIONG K N, et al. Preliminary risk assessment of molybdenum in the soils and crops around the Ni-Mo polymetallic mining area in SongLin, Zunyi, China [J]. Environmental Chemistry, 2019, 38(6): 1328-1338(in Chinese). doi: 10.7524/j.issn.0254-6108.2018081101
[22] 李俊凯, 张丹, 周培, 等. 南京市铅锌矿采矿场土壤重金属污染评价及优势植物重金属富集特征 [J]. 环境科学, 2018, 39(8): 3845-3853. LI J K, ZHANG D, ZHOU P, et al. Assessment of heavy metal pollution in soil and its bioaccumulation by dominant plants in a lead-zinc mining area, Nanjing [J]. Environmental Science, 2018, 39(8): 3845-3853(in Chinese).
[23] 何东, 邱波, 彭尽晖, 等. 湖南下水湾铅锌尾矿库优势植物重金属含量及富集特征 [J]. 环境科学, 2013, 34(9): 3595-3600. HE D, QIU B, PENG J H, et al. Heavy metal contents and enrichment characteristics of dominant plants in a lead-zinc tailings in Xiashuiwan of Hunan Province [J]. Environmental Science, 2013, 34(9): 3595-3600(in Chinese).
[24] BAKER A J M, BROOKS R R. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry [J]. Biorecovery, 1989, 1: 81-126. [25] 方维萱, 兀鹏武, 左建莉, 等. 硒、钼、钒污染环境的生态地球化学修复物种筛选与展望 [J]. 矿物岩石球化学通报, 2005, 24(3): 222-231. FANG W X, WU P W, ZUO J L, et al. Selection of plant species for ecologically geochemical phytorem ediation of the environments polluted by selenium, molybdenum and vanadium and its perspectives [J]. Bulletin of Mineralogy Petrology and Geochemistry, 2005, 24(3): 222-231(in Chinese).
[26] 徐华伟, 张仁陟, 谢永. 铅锌矿区先锋植物野艾蒿对重金属的吸收与富集特征 [J]. 农业环境科学学报, 2009, 28(6): 1136-1141. doi: 10.3321/j.issn:1672-2043.2009.06.008 XU H W, ZHANG R Z, XIE Y. Accumulation and distribution of heavy metals in Artemisia lavandulaefolia at lead-zinc mining area [J]. Journal of Agro-Enviromnent Science, 2009, 28(6): 1136-1141(in Chinese). doi: 10.3321/j.issn:1672-2043.2009.06.008
[27] 张龙, 张云霞, 宋波, 等. 云南兰坪铅锌矿区优势植物重金属富集特性及应用潜力 [J]. 环境科学, 2020, 41(9): 4210-4217. doi: 10.13227/j.hjkx.202001019 ZHANG l, ZHANG Y X, SONG B, et al. Potential of accumulation and application of dominant plants in Lanping Lead-zinc Mine, Yunnan Province [J]. Environmental Science, 2020, 41(9): 4210-4217(in Chinese). doi: 10.13227/j.hjkx.202001019
[28] 杨贤均, 刘可慧, 刘华, 等. 锰污染对酸模叶蓼生长、锰吸收及抗氧化物活性的影响 [J]. 植物科学学报, 2016, 34(6): 926-933. doi: 10.11913/PSJ.2095-0837.2016.60926 YANG X J, LIU K H, LIU H, et al. Effects of manganese contamination on the growth, Mn accumulation and antioxidants of Polygonum lapathifolium Linn [J]. Plant Science Journal, 2016, 34(6): 926-933(in Chinese). doi: 10.11913/PSJ.2095-0837.2016.60926
[29] 罗为桂, 刘四喜, 段海风, 等. 普通商陆耐锰特性研究及除锰能力评估 [J]. 湖南农业科学, 2012, 23: 42-44. doi: 10.3969/j.issn.1006-060X.2012.01.013 LUO W G, LIU S X, DUAN H F, et al. Characteristics of manganese tolerance of normal Phytolacca acinosa roxb. and its capacity of removing manganese from soil [J]. Hunan Agricultural Sciences, 2012, 23: 42-44(in Chinese). doi: 10.3969/j.issn.1006-060X.2012.01.013
[30] 王学锋, 陈亚青, 马鑫, 等. 某工业区排污河道周边植物重金属富集特征 [J]. 环境科学与技术, 2013, 36(1): 74-78. doi: 10.3969/j.issn.1003-6504.2013.01.017 WANG X F, CHEN Y Q, MA X, et al. Heavy metal in plants around drainage waterway of an industrial zone: characteristics of absorption and accumulation [J]. Environmental Science & Technology, 2013, 36(1): 74-78(in Chinese). doi: 10.3969/j.issn.1003-6504.2013.01.017
[31] 甘龙, 罗玉红, 李晓玲, 等. Cd胁迫下一年蓬的生长、Cd积累及叶绿素荧光特性 [J]. 武汉大学学报(理学版), 2018, 64(1): 70-78. GAN L, LUO Y H, LI X L, et al. Growth, Cd accumulation, and chlorophyll fluorescence characteristic of Erigeron annuus under Cd stress [J]. Journal of Wuhan University(Natural Science Edition), 2018, 64(1): 70-78(in Chinese).
[32] 宋清海, 蔡信德, 吴颖欣, 等. 香根草对污染土壤水溶态重金属组分胁迫响应研究 [J]. 农业环境科学学报, 2019, 38(12): 2715-2722. doi: 10.11654/jaes.2019-1048 SONG Q H, CAI X D, WU Y X, et al. Response of Vetiveria zizanioides to the stress of water-soluble components of heavy metals in contaminated soil [J]. Journal of Agro-Environment Science, 2019, 38(12): 2715-2722(in Chinese). doi: 10.11654/jaes.2019-1048
[33] 陆金, 赵兴青, 黄健, 等. 铜陵狮子山矿区尾矿库及周边17种乡土植物重金属含量及富集特征 [J]. 环境化学, 2019, 38(1): 78-86. doi: 10.7524/j.issn.0254-6108.2018021302 LU J, ZHAO X Q, HUANG J, et al. Heavy metal contents and enrichment characteristics of 17 species indigenous plants in the tailing surrounding in Shizishan, Tongling [J]. Environmental Chemistry, 2019, 38(1): 78-86(in Chinese). doi: 10.7524/j.issn.0254-6108.2018021302
[34] TANG Y T, QIU R L, ZENG X W, et al. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch [J]. Environmental and Experimental Botany, 2009, 66(1): 126-134. doi: 10.1016/j.envexpbot.2008.12.016 [35] 陈昌东, 张安宁, 腊明, 等. 平顶山矿区矸石山周边土壤重金属污染及优势植物富集特征 [J]. 生态环境学报, 2019, 28(6): 1216-1223. CHEN C D, ZHANG A N, LA M, et al. Soil heavy metal contamination and enrichment of dominant plants in coal waste piles in Pingdingshan area [J]. Ecology and Environmental Sciences, 2019, 28(6): 1216-1223(in Chinese).
[36] 陈勤, 沈羽, 方炎明, 等. 紫湖溪流域重金属污染风险与植物富集特征 [J]. 农业工程学报, 2014, 30(14): 198-205. doi: 10.3969/j.issn.1002-6819.2014.14.025 CHEN Q, SHEN Y, FANG Y M, et al. Heavy metals pollution risk and characteristics of plant accumulation along Zihu River [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14): 198-205(in Chinese). doi: 10.3969/j.issn.1002-6819.2014.14.025
[37] 谭立敏, 李科林, 李顺. 株洲霞湾港域乡土植物及其根际土壤重金属蓄积特性 [J]. 水土保持学报, 2013, 27(4): 161-165. TAN L M, LI K L, LI S. Accumulation characteristics of heavy metals in native plants and rhizosphere soil at Harbor Area in Zhuzhou [J]. Journal of Soil and Water Conservation, 2013, 27(4): 161-165(in Chinese).
[38] 黄小娟, 江长胜, 郝庆菊. 重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征 [J]. 生态学报, 2014, 34(15): 4201-4211. HUANG X J, JIANG C H, HAO Q J. Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi Manganese mineland of Chongqing [J]. Acta Ecologica Sinica, 2014, 34(15): 4201-4211(in Chinese).
[39] VACULIK M, KONLECHNER C, LANGER I, et al. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities [J]. Environmental Pollution, 2012, 163: 117-126. doi: 10.1016/j.envpol.2011.12.031