[1] |
ELLIOTT D W, ZHANG W X. Field assessment of nanoscale bimetallic particles for groundwater treatment [J]. Environmental Science & Technology, 2001, 35(24): 4922-4926.
|
[2] |
PIRRONE N, GHORAB M, DJELLABI R, et al. Photo-reduction of hexavalent chromium in aqueous solution in the presence of TiO2 as semiconductor catalyst[C]. E3S Web of Conferences, 2013, 1: 25008.
|
[3] |
KIM C, LAN Y, DENG B. Kinetic study of hexavalent Cr(Ⅵ) reduction by hydrogen sulfide through goethite surface catalytic reaction [J]. Geochemical Journal, 2007, 41: 397-405. doi: 10.2343/geochemj.41.397
|
[4] |
HUANG Y P, MA H, WANG S G, et al. Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers [J]. ACS Applied Materials & Interfaces, 2012, 4(6): 3054-3061.
|
[5] |
WANG G, HUANG L P, ZHANG Y F. Cathodic reduction of hexavalent chromium [Cr(Ⅵ)] coupled with electricity generation in microbial fuel cells [J]. Biotechnology Letters, 2008, 30(11): 1959-1966. doi: 10.1007/s10529-008-9792-4
|
[6] |
SARKAR B, NAIDU R, KRISHNAMURTI G, et al. Manganese(Ⅱ)-catalyzed and clay-minerals-mediated reduction of chromium(Ⅵ) by citrate [J]. Environmental Science & Technology, 2013, 47: 13629-13636.
|
[7] |
CELEBI M, YURDERI M, BULUT A, et al. Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction [J]. Applied Catalysis B: Environmental, 2016, 180: 53-64. doi: 10.1016/j.apcatb.2015.06.020
|
[8] |
ZHU K, CHEN C, LU S, et al. MOFs-induced encapsulation of ultrafine Ni nanoparticles into 3D N-doped graphene-CNT frameworks as a recyclable catalyst for Cr(Ⅵ) reduction with formic acid [J]. Carbon, 2019, 148: 52-63. doi: 10.1016/j.carbon.2019.03.044
|
[9] |
LIN T B, CHOU T C. Pd migration. 1. A possible reason for the deactivation of pyrolysis gasoline partial hydrogenation catalysts [J]. Industrial & Engineering Chemistry Research, 1995, 34(1): 128-134.
|
[10] |
CHOONG C K S, CHEN L W, DU Y H, et al. The role of metal-support interaction for CO-free hydrogen from low temperature ethanol steam reforming on Rh-Fe catalysts [J]. Physical Chemistry Chemical Physics, 2017, 19(6): 4199-4207. doi: 10.1039/C6CP05934A
|
[11] |
EISSA S, JIMENEZ G C, MAHVASH F, et al. Functionalized CVD monolayer graphene for label-free impedimetric biosensing [J]. Nano Research, 2015, 8(5): 1698-1709. doi: 10.1007/s12274-014-0671-0
|
[12] |
FU T, WANG M, CAI W M, et al. Acid-resistant catalysis without use of noble metals: Carbon nitride with underlying nickel [J]. ACS Catalysis, 2014, 4(8): 2536-2543. doi: 10.1021/cs500523k
|
[13] |
LI M, HE J, TANG Y, et al. Liquid phase catalytic hydrogenation reduction of Cr(Ⅵ) using highly stable and active Pd/CNT catalysts coated by N-doped carbon [J]. Chemosphere, 2019, 217(FEBa): 742-753.
|
[14] |
MU Y, AI Z H, ZHANG L Z, et al. Insight into core-shell dependent anoxic Cr(Ⅵ) removal with Fe@Fe2O3 nanowires: Indispensable role of surface bound Fe(Ⅱ) [J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1997-2005.
|
[15] |
ROBERTS G W, SATTERFIELD C N. Effectiveness factor for porous catalysts. Langmuir-Hinshelwood kinetic expressions [J]. Industrial & Engineering Chemistry Fundamentals, 1965, 4(3): 288-293.
|