-
Cr(Ⅵ)作为水生态环境中重金属污染之一,在水中的阴离子主要有Cr2O72−、CrO42−和HCrO4−,其稳定性强,废水排放标准为Cr(Ⅵ)浓度低于0.5 mg·L−1。不同的氧化态中Cr(Ⅵ)毒性最高的,是一种被证实的诱变剂和致癌物[1]。相反,Cr(Ⅲ)毒性就小很多,在环境中迁移性较差,容易在水中沉淀。Cr(Ⅵ)的化合物为分析工作的主要标准物,在镀铬工业和制革工业中用作鞣剂,因此工业废水中含有大量高毒性的Cr(Ⅵ),严重污染水和土壤,影响人类的健康。Ghorab等[2]利用半导体TiO2来对Cr(Ⅵ)进行光催化还原,将Cr(Ⅵ)还原为Cr(Ⅲ)。人们还对多种催化剂和还原剂进行了研究,如Cu基超疏水性的针铁矿[3],Pd纳米粒子[4],微生物燃料电池的电解还原[5],Mn(Ⅱ)[6],Pd纳米粒子负载胺类功能化SiO2[7],MOFs诱导超细Ni纳米粒子等[8]。
液相催化加氢是去除水中污染物最常用的方法,贵金属催化剂的失活也是催化中常见的现象,因此大量学者对此进行了研究。Lin等[9]通过研究确定了Pd/Al2O3催化剂的失活是因为催化剂使用后,Pd含量降低了9.8%。Choong等[10]通过在Rh的表面包裹Fe的氧化物来增加Rh与载体之间的作用力,有效避免了Rh的流失,从而有效避免了催化剂的失活。
本研究通过在im-Pd/Al2O3催化剂的表面有效包裹上C,增加金属Pd与载体Al2O3之间的相互作用力,来避免金属Pd的流失,从而能够使催化剂具有高活性和高稳定性。
im-Pd/Al2O3@C上Cr(Ⅵ)的液相催化加氢还原
Liquid-phase Catalytic Hydrogenation Reduction of Cr(Ⅵ) on im-Pd/Al2O3@C
-
摘要:
通过在im-Pd/Al2O3催化剂的表面有效包裹导电的碳层,形成碳包裹催化剂(Pd/Al2O3@C),并通过一系列的表征手段对催化剂的结构特性进行了分析,并系统研究了催化剂催化加氢还原Cr(Ⅵ)性能,考察催化剂的催化性能。为比较包裹碳催化剂的炭化温度影响,制备了系列不同炭化温度的im-Pd/Al2O3@C催化剂。作为对比,同时制备了SiO2包裹催化剂(im-Pd/Al2O3@SiO2)。催化剂的活性评价结果表明,Pd/Al2O3@C-600催化剂具有良好的催化活性和稳定性。
Abstract:In this study, supported Pd catalysts on Al2O3 using carbon as overcoating (Pd/Al2O3@C) with three carbonization temperatures (400 ℃, 600 ℃ and 800 ℃ were prepared, and liquid phase catalytic reduction of Cr(Ⅵ) were systematically studied. For comparison, Pd/Al2O3 coated by SiO2 (Pd/Al2O3@SiO2) was also prepared. Characterization results showed that carbon overcoating could effectively protect Pd particles from leaching during catalyst cyclic runs. For liquid phase catalytic reduction of Cr(Ⅵ), negligible Cr(Ⅵ) conversion was observed on Pd/Al2O3@SiO2. In contrast, marked catalytic activities for Cr(Ⅵ) reduction were observed on Pd/Al2O3@C-400, Pd/Al2O3@C-600 and Pd/Al2O3@C-800. Additionally, the catalytic activity of Pd/Al2O3@C exhibited a volcano-type dependence on carbonization temperature. As for catalytic stability, Pd/Al2O3@C retained its initial activity in 5 catalyst cyclic runs without any deactivation, whereas Pd/Al2O3 lost its 77% activity after 5 runs, reflecting strikingly enhanced stability of Pd/Al2O3 upon carbon overcoating.
-
表 1 催化剂的特性
Table 1. The properties of the catalysts
Pd a/% wt. BET surface area b/(m2 g−1) im-Pd/Al2O3 0.78 109 im-Pd/Al2O3@C-400 0.37 71 im-Pd/Al2O3@C-600 0.48 176 im-Pd/Al2O3@C-800 0.52 182 im-Pd/Al2O3@SiO2 0.36 281 im-Pd/Al2O3 after use for 5 times 0.36 im-Pd/Al2O3@C-600 after use for 5 times 0.47 Note: a Determined by ICP; b Determined by low tempreture N2-sorption. -
[1] ELLIOTT D W, ZHANG W X. Field assessment of nanoscale bimetallic particles for groundwater treatment [J]. Environmental Science & Technology, 2001, 35(24): 4922-4926. [2] PIRRONE N, GHORAB M, DJELLABI R, et al. Photo-reduction of hexavalent chromium in aqueous solution in the presence of TiO2 as semiconductor catalyst[C]. E3S Web of Conferences, 2013, 1: 25008. [3] KIM C, LAN Y, DENG B. Kinetic study of hexavalent Cr(Ⅵ) reduction by hydrogen sulfide through goethite surface catalytic reaction [J]. Geochemical Journal, 2007, 41: 397-405. doi: 10.2343/geochemj.41.397 [4] HUANG Y P, MA H, WANG S G, et al. Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers [J]. ACS Applied Materials & Interfaces, 2012, 4(6): 3054-3061. [5] WANG G, HUANG L P, ZHANG Y F. Cathodic reduction of hexavalent chromium [Cr(Ⅵ)] coupled with electricity generation in microbial fuel cells [J]. Biotechnology Letters, 2008, 30(11): 1959-1966. doi: 10.1007/s10529-008-9792-4 [6] SARKAR B, NAIDU R, KRISHNAMURTI G, et al. Manganese(Ⅱ)-catalyzed and clay-minerals-mediated reduction of chromium(Ⅵ) by citrate [J]. Environmental Science & Technology, 2013, 47: 13629-13636. [7] CELEBI M, YURDERI M, BULUT A, et al. Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction [J]. Applied Catalysis B: Environmental, 2016, 180: 53-64. doi: 10.1016/j.apcatb.2015.06.020 [8] ZHU K, CHEN C, LU S, et al. MOFs-induced encapsulation of ultrafine Ni nanoparticles into 3D N-doped graphene-CNT frameworks as a recyclable catalyst for Cr(Ⅵ) reduction with formic acid [J]. Carbon, 2019, 148: 52-63. doi: 10.1016/j.carbon.2019.03.044 [9] LIN T B, CHOU T C. Pd migration. 1. A possible reason for the deactivation of pyrolysis gasoline partial hydrogenation catalysts [J]. Industrial & Engineering Chemistry Research, 1995, 34(1): 128-134. [10] CHOONG C K S, CHEN L W, DU Y H, et al. The role of metal-support interaction for CO-free hydrogen from low temperature ethanol steam reforming on Rh-Fe catalysts [J]. Physical Chemistry Chemical Physics, 2017, 19(6): 4199-4207. doi: 10.1039/C6CP05934A [11] EISSA S, JIMENEZ G C, MAHVASH F, et al. Functionalized CVD monolayer graphene for label-free impedimetric biosensing [J]. Nano Research, 2015, 8(5): 1698-1709. doi: 10.1007/s12274-014-0671-0 [12] FU T, WANG M, CAI W M, et al. Acid-resistant catalysis without use of noble metals: Carbon nitride with underlying nickel [J]. ACS Catalysis, 2014, 4(8): 2536-2543. doi: 10.1021/cs500523k [13] LI M, HE J, TANG Y, et al. Liquid phase catalytic hydrogenation reduction of Cr(Ⅵ) using highly stable and active Pd/CNT catalysts coated by N-doped carbon [J]. Chemosphere, 2019, 217(FEBa): 742-753. [14] MU Y, AI Z H, ZHANG L Z, et al. Insight into core-shell dependent anoxic Cr(Ⅵ) removal with Fe@Fe2O3 nanowires: Indispensable role of surface bound Fe(Ⅱ) [J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1997-2005. [15] ROBERTS G W, SATTERFIELD C N. Effectiveness factor for porous catalysts. Langmuir-Hinshelwood kinetic expressions [J]. Industrial & Engineering Chemistry Fundamentals, 1965, 4(3): 288-293.