[1] LI M, XI X H, XIAO G Y, et al. National multi-purpose regional geochemical survey in China [J]. Journal of Geochemical Exploration, 2014, 139: 21-30. doi: 10.1016/j.gexplo.2013.06.002
[2] TENG Y G, WU J, LU S J, et al. Soil and soil environmental quality monitoring in China: A review [J]. Environment International, 2014, 69: 177-199. doi: 10.1016/j.envint.2014.04.014
[3] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价 [J]. 环境科学, 2020, 41(6): 2822-2833. CHEN W X, LI Q, WANG Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China [J]. Environmental Science, 2020, 41(6): 2822-2833(in Chinese).
[4] 谷阳光, 高富代. 我国省会城市土壤重金属含量分布与健康风险评价 [J]. 环境化学, 2017, 36(1): 62-71. doi: 10.7524/j.issn.0254-6108.2017.01.2016051705 GU Y G, GAO F D. Spatial distribution and health risk assessment of heavy metals in provincial capital cities, China [J]. Environmental Chemistry, 2017, 36(1): 62-71(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051705
[5] 谭晓恒, 郭少毓, 喻相标, 等. 焙烧铜渣中磁铁矿的物性转变研究 [J]. 有色金属科学与工程, 2020, 11(5): 83-89. TAN X H, GUO S Y, YU X B, et al. Study on the physical property transformation of magnetite in roasted copper slag [J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 83-89(in Chinese).
[6] GORAI B, JANA R K, PREMCHAND. Characteristics and utilisation of copper slag—a review [J]. Resources, Conservation and Recycling, 2003, 39(4): 299-313. doi: 10.1016/S0921-3449(02)00171-4
[7] LEMOUGNA P N, YLINIEMI J, ADESANYA E, et al. Reuse of copper slag in high-strength building ceramics containing spodumene tailings as fluxing agent [J]. Minerals Engineering, 2020, 155: 106448. doi: 10.1016/j.mineng.2020.106448
[8] KHANZADI M, BEHNOOD A. Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate [J]. Construction and Building Materials, 2009, 23(6): 2183-2188. doi: 10.1016/j.conbuildmat.2008.12.005
[9] WAGH A S, JEONG S Y. Chemically bonded phosphate ceramics: III, reduction mechanism and its application to iron phosphate ceramics [J]. Journal of the American Ceramic Society, 2003, 86(11): 1850-1855. doi: 10.1111/j.1151-2916.2003.tb03571.x
[10] MASTALSKA-POPŁAWSKA J, PERNECHELE M, TROCZYNSKI T, et al. Chemically bonded phosphate ceramics based on silica residues enriched with iron(III) oxide and silicon carbide [J]. Journal of Molecular Structure, 2019, 1180: 215-219. doi: 10.1016/j.molstruc.2018.11.087
[11] 李娜秋. 铜渣基铁系磷酸盐化学键合材料的制备及其对重金属的固化研究[D]. 昆明: 昆明理工大学, 2019. LI N Q. Preparation of copper slag based iron phosphate chemical bonding material and its application in heavy metal solidification[D]. Kunming: Kunming University of Science and Technology, 2019(in Chinese).
[12] LIU D G, MIN X B, KE Y, et al. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: Solidification/stabilization of arsenic and heavy metals with minimal cement clinker [J]. Environmental Science and Pollution Research, 2018, 25(8): 7600-7607. doi: 10.1007/s11356-017-1084-x
[13] ZUO Z L, YU Q B, LIU J X, et al. Effects of CaO on reduction of copper slag by biomass based on ion and molecule coexistence theory and thermogravimetric experiments [J]. ISIJ International, 2017, 57(2): 220-227. doi: 10.2355/isijinternational.ISIJINT-2016-402
[14] LI Z, MA G J, LIU M K, et al. Calculation model for activity of FeO in quaternary slag system SiO2-CaO-Al2O3-FeO [J]. Metals, 2018, 8(9): 714. doi: 10.3390/met8090714
[15] FENG Y, CHEN Q S, ZHOU Y L, et al. Modification of glass structure via CaO addition in granulated copper slag to enhance its pozzolanic activity [J]. Construction and Building Materials, 2020, 240: 117970. doi: 10.1016/j.conbuildmat.2019.117970
[16] 冀泽华, 吴晓芙, 李芸, 等. 水溶液重金属离子在蛭石上的动态吸附行为与化学势变 [J]. 环境化学, 2015, 34(11): 2109-2117. doi: 10.7524/j.issn.0254-6108.2015.11.2015032309 JI Z H, WU X F, LI Y, et al. Kinetic adsorption and change in chemical potential of heavy metal ions in aqueous solutions [J]. Environmental Chemistry, 2015, 34(11): 2109-2117(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.11.2015032309
[17] 张理群,周慧慧,郑刘根,等. 尾渣中砷的精细化学结构、赋存形态 [J]. 环境化学, 2021, 40(5): 1611-1618. ZHANG L Q, ZHOU H H, ZHENG L G, et al. The fine chemical structure and occurrence patterns of arsenic in tailings [J]. Environmental Chemistry, 2021, 40(5): 1611-1618(in Chinese).
[18] ZHANG J D, SHEN Z M, MEI Z J, et al. Removal of phosphate by Fe-coordinated amino-functionalized 3D mesoporous silicates hybrid materials [J]. Journal of Environmental Sciences, 2011, 23(2): 199-205. doi: 10.1016/S1001-0742(10)60393-2
[19] KU J G, ZHANG L, FU W, et al. Mechanistic study on calcium ion diffusion into fayalite: A step toward sustainable management of copper slag [J]. Journal of Hazardous Materials, 2021, 410: 124630. doi: 10.1016/j.jhazmat.2020.124630
[20] WANG T, WANG S G, LUO Q Q, et al. Hydrogen adsorption structures and energetics on iron surfaces at high coverage [J]. The Journal of Physical Chemistry C, 2014, 118(8): 4181-4188. doi: 10.1021/jp410635z
[21] KINNIBURGH D G, JACKSON M L, SYERS J K. Adsorption of alkaline earth, transition, and heavy metal cations by Hydrous oxide gels of iron and aluminum [J]. Soil Science Society of America Journal, 1976, 40(5): doi:10.2136/sssaj1976.03615995004000050047x.
[22] NGUYEN T C, LOGANATHAN P, NGUYEN T V, et al. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies [J]. Chemical Engineering Journal, 2015, 270: 393-404. doi: 10.1016/j.cej.2015.02.047
[23] LI Z T, WANG L, MENG J, et al. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil [J]. Journal of Hazardous Materials, 2018, 344: 1-11. doi: 10.1016/j.jhazmat.2017.09.036
[24] CASTRO L, BLÁZQUEZ M L, GONZÁLEZ F, et al. Heavy metal adsorption using biogenic iron compounds [J]. Hydrometallurgy, 2018, 179: 44-51. doi: 10.1016/j.hydromet.2018.05.029
[25] BOGAERTS M, SCHMIDT M W. Experiments on silicate melt immiscibility in the system Fe2SiO4-KAlSi3O8-SiO2-CaO-MgO-TiO2-P2O5 and implications for natural magmas [J]. Contributions to Mineralogy and Petrology, 2006, 152(3): 257-274. doi: 10.1007/s00410-006-0111-6
[26] LI Y K, ZHU X, QI X J, et al. Removal and immobilization of arsenic from copper smelting wastewater using copper slag by in situ encapsulation with silica gel [J]. Chemical Engineering Journal, 2020, 394: 124833. doi: 10.1016/j.cej.2020.124833
[27] SAIKIA B J, PARTHASARATHY G. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, northeastern India [J]. Journal of Modern Physics, 2010, 1(4): 206-210. doi: 10.4236/jmp.2010.14031
[28] PETIT T, PUSKAR L. FTIR spectroscopy of nanodiamonds: Methods and interpretation [J]. Diamond and Related Materials, 2018, 89: 52-66. doi: 10.1016/j.diamond.2018.08.005
[29] 姚时, 张鸣帅, 李林璇, 等. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理 [J]. 环境化学, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401 YAO S, ZHANG M S, LI L X, et al. Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution [J]. Environmental Chemistry, 2018, 37(1): 96-107(in Chinese). doi: 10.7524/j.issn.0254-6108.2017050401
[30] ZHAO Z W, CHAI L Y, PENG B, et al. Arsenic vitrification by copper slag based glass: Mechanism and stability studies [J]. Journal of Non-Crystalline Solids, 2017, 466/467: 21-28. doi: 10.1016/j.jnoncrysol.2017.03.039
[31] YANG Z H, LIN Q, XIA J X, et al. Preparation and crystallization of glass-ceramics derived from iron-rich copper slag [J]. Journal of Alloys and Compounds, 2013, 574: 354-360. doi: 10.1016/j.jallcom.2013.05.091
[32] ARROYAVE J M, PUCCIA V, ZANINI G P, et al. Surface speciation of phosphate on goethite as seen by InfraRed Surface Titrations (IRST) [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 199: 57-64. doi: 10.1016/j.saa.2018.03.043
[33] YANG Z H, LIN Q, LU S C, et al. Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag [J]. Ceramics International, 2014, 40(5): 7297-7305. doi: 10.1016/j.ceramint.2013.12.071