-
我国面临农田土壤重金属污染类型增多,污染面积扩大,程度加深等问题[1-2]。我国各行政区农田呈现南方重金属污染远高于北方的特点,而城市化区域重金属污染则呈现北方高于南方的特点,虽然检测方法不一样,但均表明Cd污染最严重,Cu、Pb、Zn、Cr、Ni也均有不同程度的污染[3],我国省会城市Cd、Pb、Ni、Cu、Zn和Hg的含量均显示超标[4],土壤重金属污染控制与治理亟待开展。
铜渣是铜冶炼和精炼过程中获得的副产品,我国产量呈逐年上升趋势,几乎每7年就翻一番,2017年产量更是占世界产量的30%[5]。如此大量的铜渣积聚,不合理处置会导致一系列环境和空间问题,尤其是存在金属浸出风险[6-7]。铜渣的处置方法主要是金属回收,生产增值产品以及在炉渣堆或库存中处置[8],而金属回收存在工艺复杂、回收不彻底、成本较高等问题。基于磷酸镁水泥的形成,已有大量研究致力于铁基磷酸盐材料的合成[9-10],由于铁基磷酸盐凝胶的存在,铁基磷酸盐材料不仅具有良好的力学性能,而且拥有较好的吸附重金属能力。铜渣中铁含量较高,为实现铜渣的充分利用,已有人研究了铜渣系磷酸盐材料的合成,磷酸盐对铜渣具有一定的凝结性,通过与铜渣中的Fe形成FeH2P3O10·H2O、Fe(H2PO2)3、FeH2P3O10、FePO4、Fe(H2PO4)3等铁基磷酸盐凝胶体系,该体系对重金属有较好的固化作用[11]。而铜渣中的Fe主要以Fe2SiO4和Fe3O4为主,考虑添加一定的改性剂破坏铜渣中的Fe2SiO4结构,释放Fe离子,增强磷酸盐对铜渣的凝结性能,提高吸附重金属性能。Liu等[12]利用铜渣和含砷石膏泥混合发现可以有效的稳定固化重金属尤其是Pb和Cu。Zuo等[13]发现CaO的添加可以打破铜渣中的反应体系的平衡,促进2FeO·SiO2中Fe和Si分离,有利于铜渣的还原。Li等[14]发现,CaO比FeO更容易与SiO2结合生成硅酸钙,取代2FeO·SiO2中的FeO,增加了FeO的生成。大量的亚铁离子在硅酸盐四面体中形成硅酸酯单元共聚网络,在常温搅拌的情况下,CaO的添加同样能够破坏硅酸盐网络中的桥接氧[15]。但目前对CaO在铜渣系磷酸盐体系中的影响研究较少,对加入磷酸盐后,CaO能否破坏铜渣中的Fe2SiO4结构,以及促进铁基磷酸盐凝胶的生成尚不清楚。CaO对铜渣系磷酸盐内部结构的作用机理有待揭示。
基于磷酸铁材料的形成机制,结合铜渣中铁的含量高达50%,本研究将以磷酸盐作为激发剂,激发铜渣生成吸附材料,利用CaO改性铜渣系磷酸盐吸附材料,研究其对Pb、Cr、Cd、Cu、Ni 的5种重金属的吸附行为及机理,为解决重金属污染提供可行的方法。
基于CaO改性的铜渣系磷酸盐材料及其重金属吸附机制
Heavy metals adsorption mechanism based on copper slag phosphate material modified by CaO
-
摘要: 我国铜渣堆积导致的占地效应和污染效应问题日益严重。本研究以CaO为改性材料,制备一种高效去除重金属(Pb、Cr、Cd、Cu和 Ni)的铜渣系磷酸盐吸附材料。通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)等测试技术表征了CaO的添加量对铜渣系磷酸盐材料结构的影响,利用吸附动力学和傅里叶红外分析仪(FTIR)探讨了改性材料在CaO-SiO2-FexOy-P2O5四元体系中对重金属的吸附机理。结果表明:(1)随着CaO的增加材料逐渐由层块状解体生成多孔结构。CaO的添加会使Fe离子从Fe2SiO4和Fe3O4结构中释放,促进铁基磷酸盐凝胶的生成,从而增强磷酸盐对铜渣的凝结性;(2)CaO添加量为铜渣的3%时,四元体系对重金属的吸附能力最强,除Cd和Cu在600 mg·L−1,Cr在200 mg·L−1符合准一级动力学外,其余浓度下均更加符合准二级动力学模型,理论吸附能力依次为Pb(476.19 mg·g−1)>Cd(112.36 mg·g−1)>Ni(90.09 mg·g−1)>Cr(86.21 mg·g−1)>Cu(81.97 mg·g−1);(3)在CaO-SiO2-FexOy-P2O5四元体系中,对Pb、Cd、Ni的吸附主要由铁基磷酸盐凝胶共沉降和Si—O—Si(Si—O—Me)四面体形成的网络结构固定协同作用,然而对Cr的吸附以Si—O—Si四面体形成Si—O—Me非桥接氧结构固定为主,对Cu的吸附则主要以铁基磷酸盐凝胶共沉降为主。本研究提供了以废治污的新思路,为重金属污染提供新的解决办法。
-
关键词:
- 铜渣系磷酸盐吸附材料 /
- CaO /
- 四元体系 /
- 铁基磷酸盐凝胶 /
- 共沉降 /
- Si—O—Si四面体
Abstract: The land occupation and environment pollution caused by copper slag accumulation are increasing greatly in China. The copper slag phosphate adsorption material modified by CaO was prepared to remove heavy metals (Pb, Cr, Cd, Cu and Ni). The effect of CaO on the structure of copper slag phosphate material was determined by both SEM and XRD. Meanwhile, the adsorption properties and mechanisms of heavy metals in CaO-SiO2-FexOy-P2O5 quaternary system were studied by both adsorption kinetics and FTIR. Results show that (1) the modified material disintegrates into porous structures gradually with the increasing of CaO addition. The free Fe ions were releasing from Fe2SiO4 and Fe3O4 crystal phases by adding of CaO, resulting in the promotion of the coagulability of phosphate to copper slag and formation of iron based phosphate gel. (2) all the adsorbents with 3% CaO are preferred to fix with the pseudo second-order kinetics model except for Cd and Cu at 600 mg·L−1 and Cr at 200 mg·L−1, the theoretical adsorption capacities were decreased in the order of Pb (476.19 mg·g−1) >Cd (112.36 mg·g−1) >Ni (90.09 mg·g−1) >Cr (86.21 mg·g−1) >Cu (81.97 mg·g−1). (3) Pb, Cd and Ni were adsorbed by the synergy of iron based phosphate gel co-precipitation and the network structure of Si-O-Si (Si-O-Me) tetrahedron formation in CaO-SiO2-FexOy-P2O5 system. Meanwhile, Cr was mainly adsorbed by Si—O—Si tetrahedron forming non bridged oxygen (Si—O—Me) structure, Cu was mostly existed in the co-precipitation of iron gel. This study provides useful information for utilization of solid waste and heavy metal treatment. -
表 1 铜渣的化学组成 (%)
Table 1. Chemical composition of copper slag (%)
成分Components FexOy SiO2 Al2O3 CaO ZnO K2O SO3 W 54.81 28.09 3.80 3.58 1.58 1.35 1.19 表 2 不同CaO添加量的吸附剂
Table 2. Adsorbents with different CaO additions
序号
Number名称
Name铜渣/g
Copper slag氧化钙/g
CaO铜渣/磷酸二氢铵
CS/ADP水胶比
W/B硼砂/%
Na2B4O7·
10H2O1 M0 10 0 4∶1 0.14 2 2 M3 9.7 0.3 4∶1 0.18 2 3 M5 9.5 0.5 4∶1 0.18 2 4 M10 9.0 1.0 4∶1 0.18 2 表 3 M3在不同重金属浓度下的吸附动力学参数
Table 3. The adsorption kinetic parameters of M3 at different concentrations of heavy metals
重金属
Heavy Metal浓度/(mg·L−1)
Concen-tration平衡吸附量/
(mg·g−1)Qmax准一级动力学方程
Pseudo-first-order kinetic equation准二级动力学方程
Pseudo-second-order kinetic equationQ1/(mg·g−1) k1 R12 Q2/(mg·g−1) k2 R22 Pb 200 237.21 219.31 5.3905 0.9831 256.41 0.0218 0.9987 400 430.23 401.10 5.9942 0.9887 476.19 0.0167 0.9973 600 400.73 350.41 5.8591 0.9864 416.67 0.0078 0.9991 Cr 200 90.02 82.09 4.4078 0.9880 113.64 0.2009 0.9680 400 81.76 57.05 4.0439 0.9969 86.21 0.1409 0.9985 600 71.22 40.34 3.6974 0.9869 74.07 0.1073 0.9995 Cd 200 95.12 85.84 4.4525 0.9881 104.17 0.0649 0.9903 400 106.13 105.18 4.6667 0.9962 112.36 0.0400 0.9988 600 78.12 67.19 4.2075 0.9997 82.64 0.0460 0.9986 Cu 200 55.43 38.19 3.6426 0.9822 58.14 0.0599 0.9982 400 75.27 70.89 4.2611 0.9951 81.97 0.0737 0.9964 600 81.22 75.64 4.3260 0.9981 86.96 0.0580 0.9952 Ni 200 80.23 78.26 4.3601 0.9974 90.09 0.1032 0.9983 400 66.85 55.65 4.0191 0.9702 73.53 0.1128 0.9878 600 50.12 40.56 3.7027 0.9927 54.64 0.1290 0.9988 -
[1] LI M, XI X H, XIAO G Y, et al. National multi-purpose regional geochemical survey in China [J]. Journal of Geochemical Exploration, 2014, 139: 21-30. doi: 10.1016/j.gexplo.2013.06.002 [2] TENG Y G, WU J, LU S J, et al. Soil and soil environmental quality monitoring in China: A review [J]. Environment International, 2014, 69: 177-199. doi: 10.1016/j.envint.2014.04.014 [3] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价 [J]. 环境科学, 2020, 41(6): 2822-2833. CHEN W X, LI Q, WANG Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China [J]. Environmental Science, 2020, 41(6): 2822-2833(in Chinese).
[4] 谷阳光, 高富代. 我国省会城市土壤重金属含量分布与健康风险评价 [J]. 环境化学, 2017, 36(1): 62-71. doi: 10.7524/j.issn.0254-6108.2017.01.2016051705 GU Y G, GAO F D. Spatial distribution and health risk assessment of heavy metals in provincial capital cities, China [J]. Environmental Chemistry, 2017, 36(1): 62-71(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051705
[5] 谭晓恒, 郭少毓, 喻相标, 等. 焙烧铜渣中磁铁矿的物性转变研究 [J]. 有色金属科学与工程, 2020, 11(5): 83-89. TAN X H, GUO S Y, YU X B, et al. Study on the physical property transformation of magnetite in roasted copper slag [J]. Nonferrous Metals Science and Engineering, 2020, 11(5): 83-89(in Chinese).
[6] GORAI B, JANA R K, PREMCHAND. Characteristics and utilisation of copper slag—a review [J]. Resources, Conservation and Recycling, 2003, 39(4): 299-313. doi: 10.1016/S0921-3449(02)00171-4 [7] LEMOUGNA P N, YLINIEMI J, ADESANYA E, et al. Reuse of copper slag in high-strength building ceramics containing spodumene tailings as fluxing agent [J]. Minerals Engineering, 2020, 155: 106448. doi: 10.1016/j.mineng.2020.106448 [8] KHANZADI M, BEHNOOD A. Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate [J]. Construction and Building Materials, 2009, 23(6): 2183-2188. doi: 10.1016/j.conbuildmat.2008.12.005 [9] WAGH A S, JEONG S Y. Chemically bonded phosphate ceramics: III, reduction mechanism and its application to iron phosphate ceramics [J]. Journal of the American Ceramic Society, 2003, 86(11): 1850-1855. doi: 10.1111/j.1151-2916.2003.tb03571.x [10] MASTALSKA-POPŁAWSKA J, PERNECHELE M, TROCZYNSKI T, et al. Chemically bonded phosphate ceramics based on silica residues enriched with iron(III) oxide and silicon carbide [J]. Journal of Molecular Structure, 2019, 1180: 215-219. doi: 10.1016/j.molstruc.2018.11.087 [11] 李娜秋. 铜渣基铁系磷酸盐化学键合材料的制备及其对重金属的固化研究[D]. 昆明: 昆明理工大学, 2019. LI N Q. Preparation of copper slag based iron phosphate chemical bonding material and its application in heavy metal solidification[D]. Kunming: Kunming University of Science and Technology, 2019(in Chinese).
[12] LIU D G, MIN X B, KE Y, et al. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: Solidification/stabilization of arsenic and heavy metals with minimal cement clinker [J]. Environmental Science and Pollution Research, 2018, 25(8): 7600-7607. doi: 10.1007/s11356-017-1084-x [13] ZUO Z L, YU Q B, LIU J X, et al. Effects of CaO on reduction of copper slag by biomass based on ion and molecule coexistence theory and thermogravimetric experiments [J]. ISIJ International, 2017, 57(2): 220-227. doi: 10.2355/isijinternational.ISIJINT-2016-402 [14] LI Z, MA G J, LIU M K, et al. Calculation model for activity of FeO in quaternary slag system SiO2-CaO-Al2O3-FeO [J]. Metals, 2018, 8(9): 714. doi: 10.3390/met8090714 [15] FENG Y, CHEN Q S, ZHOU Y L, et al. Modification of glass structure via CaO addition in granulated copper slag to enhance its pozzolanic activity [J]. Construction and Building Materials, 2020, 240: 117970. doi: 10.1016/j.conbuildmat.2019.117970 [16] 冀泽华, 吴晓芙, 李芸, 等. 水溶液重金属离子在蛭石上的动态吸附行为与化学势变 [J]. 环境化学, 2015, 34(11): 2109-2117. doi: 10.7524/j.issn.0254-6108.2015.11.2015032309 JI Z H, WU X F, LI Y, et al. Kinetic adsorption and change in chemical potential of heavy metal ions in aqueous solutions [J]. Environmental Chemistry, 2015, 34(11): 2109-2117(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.11.2015032309
[17] 张理群,周慧慧,郑刘根,等. 尾渣中砷的精细化学结构、赋存形态 [J]. 环境化学, 2021, 40(5): 1611-1618. ZHANG L Q, ZHOU H H, ZHENG L G, et al. The fine chemical structure and occurrence patterns of arsenic in tailings [J]. Environmental Chemistry, 2021, 40(5): 1611-1618(in Chinese).
[18] ZHANG J D, SHEN Z M, MEI Z J, et al. Removal of phosphate by Fe-coordinated amino-functionalized 3D mesoporous silicates hybrid materials [J]. Journal of Environmental Sciences, 2011, 23(2): 199-205. doi: 10.1016/S1001-0742(10)60393-2 [19] KU J G, ZHANG L, FU W, et al. Mechanistic study on calcium ion diffusion into fayalite: A step toward sustainable management of copper slag [J]. Journal of Hazardous Materials, 2021, 410: 124630. doi: 10.1016/j.jhazmat.2020.124630 [20] WANG T, WANG S G, LUO Q Q, et al. Hydrogen adsorption structures and energetics on iron surfaces at high coverage [J]. The Journal of Physical Chemistry C, 2014, 118(8): 4181-4188. doi: 10.1021/jp410635z [21] KINNIBURGH D G, JACKSON M L, SYERS J K. Adsorption of alkaline earth, transition, and heavy metal cations by Hydrous oxide gels of iron and aluminum [J]. Soil Science Society of America Journal, 1976, 40(5): doi:10.2136/sssaj1976.03615995004000050047x. [22] NGUYEN T C, LOGANATHAN P, NGUYEN T V, et al. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies [J]. Chemical Engineering Journal, 2015, 270: 393-404. doi: 10.1016/j.cej.2015.02.047 [23] LI Z T, WANG L, MENG J, et al. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil [J]. Journal of Hazardous Materials, 2018, 344: 1-11. doi: 10.1016/j.jhazmat.2017.09.036 [24] CASTRO L, BLÁZQUEZ M L, GONZÁLEZ F, et al. Heavy metal adsorption using biogenic iron compounds [J]. Hydrometallurgy, 2018, 179: 44-51. doi: 10.1016/j.hydromet.2018.05.029 [25] BOGAERTS M, SCHMIDT M W. Experiments on silicate melt immiscibility in the system Fe2SiO4-KAlSi3O8-SiO2-CaO-MgO-TiO2-P2O5 and implications for natural magmas [J]. Contributions to Mineralogy and Petrology, 2006, 152(3): 257-274. doi: 10.1007/s00410-006-0111-6 [26] LI Y K, ZHU X, QI X J, et al. Removal and immobilization of arsenic from copper smelting wastewater using copper slag by in situ encapsulation with silica gel [J]. Chemical Engineering Journal, 2020, 394: 124833. doi: 10.1016/j.cej.2020.124833 [27] SAIKIA B J, PARTHASARATHY G. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, northeastern India [J]. Journal of Modern Physics, 2010, 1(4): 206-210. doi: 10.4236/jmp.2010.14031 [28] PETIT T, PUSKAR L. FTIR spectroscopy of nanodiamonds: Methods and interpretation [J]. Diamond and Related Materials, 2018, 89: 52-66. doi: 10.1016/j.diamond.2018.08.005 [29] 姚时, 张鸣帅, 李林璇, 等. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理 [J]. 环境化学, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401 YAO S, ZHANG M S, LI L X, et al. Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution [J]. Environmental Chemistry, 2018, 37(1): 96-107(in Chinese). doi: 10.7524/j.issn.0254-6108.2017050401
[30] ZHAO Z W, CHAI L Y, PENG B, et al. Arsenic vitrification by copper slag based glass: Mechanism and stability studies [J]. Journal of Non-Crystalline Solids, 2017, 466/467: 21-28. doi: 10.1016/j.jnoncrysol.2017.03.039 [31] YANG Z H, LIN Q, XIA J X, et al. Preparation and crystallization of glass-ceramics derived from iron-rich copper slag [J]. Journal of Alloys and Compounds, 2013, 574: 354-360. doi: 10.1016/j.jallcom.2013.05.091 [32] ARROYAVE J M, PUCCIA V, ZANINI G P, et al. Surface speciation of phosphate on goethite as seen by InfraRed Surface Titrations (IRST) [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 199: 57-64. doi: 10.1016/j.saa.2018.03.043 [33] YANG Z H, LIN Q, LU S C, et al. Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag [J]. Ceramics International, 2014, 40(5): 7297-7305. doi: 10.1016/j.ceramint.2013.12.071