[1] |
刘鹰. 海水工业化循环水养殖技术研究进展 [J]. 中国农业科技导报, 2011, 13(5): 50-53. doi: 10.3969/j.issn.1008-0864.2011.05.08
LIU Y. Research progress on marine industrial recirculating aquaculture technology [J]. Journal of Agricultural Science and Technology, 2011, 13(5): 50-53(in Chinese). doi: 10.3969/j.issn.1008-0864.2011.05.08
|
[2] |
PRZYBYLKO A R M, THOMAS C L P, ANSTICE P J, et al. The determination of aqueous ammonia by ion mobility spectrometry [J]. Analytica Chimica Acta, 1995, 311(1): 77-83. doi: 10.1016/0003-2670(95)00177-2
|
[3] |
张海耿, 张宇雷, 张业韡, 等. 循环水养殖系统中流化床生物滤器净水效果影响因素 [J]. 环境工程学报, 2013, 7(10): 3849-3855.
ZHANG H G, ZHANG Y L, ZHANG Y W, et al. Influencing factors of purifying effluent of recirculating aquaculture system by fluidized-sand biofilter [J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 3849-3855(in Chinese).
|
[4] |
姜妍君, 强志民, 董慧峪, 等. 海水循环养殖系统水处理工艺综述 [J]. 环境化学, 2013, 32(3): 410-418.
JIANG Y J, QIANG Z M, DONG H Y, et al. Water treatment processes in marine recirculating aquaculture systems: A review [J]. Environmental Chemistry, 2013, 32(3): 410-418(in Chinese).
|
[5] |
宋协法, 边敏, 黄志涛, 等. 电化学氧化法在循环水养殖系统中去除氨氮和亚硝酸盐效果研究 [J]. 中国海洋大学学报(自然科学版), 2016, 46(11): 127-135.
SONG X F, BIAN M, HUANG Z T, et al. Studies of the ammonia and nitrite removal by electrochemical oxidation in recirculating aquaculture system [J]. Periodical of Ocean University of China, 2016, 46(11): 127-135(in Chinese).
|
[6] |
LAHAV O, BEN ASHER R, GENDEL Y. Potential applications of indirect electrochemical ammonia oxidation within the operation of freshwater and saline-water recirculating aquaculture systems [J]. Aquacultural Engineering, 2015, 65: 55-64. doi: 10.1016/j.aquaeng.2014.10.009
|
[7] |
叶章颖, 裴洛伟, 林孝昶, 等. 微电流电解去除养殖海水中氨氮效果 [J]. 农业工程学报, 2016, 32(1): 212-217. doi: 10.11975/j.issn.1002-6819.2016.01.030
YE Z Y, PEI L W, LIN X C, et al. Ammonia removal effect by using micro-current electrolysis in aquaculture saline water [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 212-217(in Chinese). doi: 10.11975/j.issn.1002-6819.2016.01.030
|
[8] |
de VOOYS A C A, KOPER M T M, van SANTEN R A, et al. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes [J]. Journal of Electroanalytical Chemistry, 2001, 506(2): 127-137. doi: 10.1016/S0022-0728(01)00491-0
|
[9] |
WANG Y H, YANG Z H, YANG J, et al. Towards continuous ammonia electro-oxidation reaction on Pt catalysts with weakened adsorption of atomic nitrogen [J]. International Journal of Hydrogen Energy, 2020, 45(41): 21816-21824. doi: 10.1016/j.ijhydene.2020.05.180
|
[10] |
DAEMS N, SHENG X, VANKELECOM I J, et al. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction[J]. Journal of Materials Chemistry A[J]. Journal of Materials Chemistry A, 2014, 2(12): 4085-4110.
|
[11] |
LIU S H, WU M T, LAI Y H, et al. Fabrication and electrocatalytic performance of highly stable and active platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons for oxygen reduction reaction [J]. Journal of Materials Chemistry, 2011, 21(33): 12489. doi: 10.1039/c1jm11488c
|
[12] |
RIBEIRO V A, de FREITAS I C, NETO A O, et al. Platinum nanoparticles supported on nitrogen-doped carbon for ammonia electro-oxidation [J]. Materials Chemistry and Physics, 2017, 200: 354-360. doi: 10.1016/j.matchemphys.2017.07.088
|
[13] |
ASSUMPÇÃO M H M T, PIASENTIN R M, HAMMER P, et al. Oxidation of ammonia using PtRh/C electrocatalysts: Fuel cell and electrochemical evaluation [J]. Applied Catalysis B: Environmental, 2015, 174/175: 136-144. doi: 10.1016/j.apcatb.2015.02.021
|
[14] |
SILVA J C M, da SILVA S G, de SOUZA R F B, et al. PtAu/C electrocatalysts as anodes for direct ammonia fuel cell [J]. Applied Catalysis A: General, 2015, 490: 133-138. doi: 10.1016/j.apcata.2014.11.015
|
[15] |
LOMOCSO T L, BARANOVA E A. Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnOx) nanoparticles [J]. Electrochimica Acta, 2011, 56(24): 8551-8558. doi: 10.1016/j.electacta.2011.07.041
|
[16] |
ZHANG L, LI F. Helical nanocoiled and microcoiled carbon fibers as effective catalyst supports for electrooxidation of methanol [J]. Electrochimica Acta, 2010, 55(22): 6695-6702. doi: 10.1016/j.electacta.2010.06.002
|
[17] |
dos REIS F V E, ANTONIN V S, HAMMER P, et al. Carbon-supported TiO2-Au hybrids as catalysts for the electrogeneration of hydrogen peroxide: Investigating the effect of TiO2 shape [J]. Journal of Catalysis, 2015, 326: 100-106. doi: 10.1016/j.jcat.2015.04.007
|
[18] |
SONG J, LIU L F, ZHANG G Q, et al. Oxygen reduction at carbon nanotubes (CNTs)/cobaltous phthalocyanine (CoPc) and MFC electricity generation affected by air-cathode catalyst layer structure [J]. Journal of the Electrochemical Society, 2016, 163(10): F1209-F1216. doi: 10.1149/2.0761610jes
|
[19] |
ALI M, WITKOWSKA A, ABBAS M, et al. Evolution of the nanostructure of Pt and Pt-Co polymer electrolyte membrane fuel cell electrocatalysts at successive degradation stages probed by X-ray photoemission [J]. Journal of Power Sources, 2014, 271: 548-555. doi: 10.1016/j.jpowsour.2014.08.028
|
[20] |
DU X W, LUO S P, DU H Y, et al. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction [J]. Journal of Materials Chemistry A, 2016, 4(5): 1579-1585. doi: 10.1039/C5TA09261B
|
[21] |
JIANG L, HSU A, CHU D, et al. Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions [J]. International Journal of Hydrogen Energy, 2010, 35(1): 365-372. doi: 10.1016/j.ijhydene.2009.10.058
|
[22] |
GOOTZEN J F E, WONDERS A H, VISSCHER W, et al. A DEMS and cyclic voltammetry study of NH3 oxidation on platinized platinum [J]. Electrochimica Acta, 1998, 43(12/13): 1851-1861.
|
[23] |
ASSUMPÇÃO M H M T, da SILVA S G, de SOUZA R F B, et al. Investigation of PdIr/C electrocatalysts as anode on the performance of direct ammonia fuel cell [J]. Journal of Power Sources, 2014, 268: 129-136. doi: 10.1016/j.jpowsour.2014.06.025
|
[24] |
SONG J, YIN Y M, LI Y H, et al. In-situ membrane fouling control by electrooxidation and microbial community in membrane electro-bioreactor treating aquaculture seawater [J]. Bioresource Technology, 2020, 314: 123701. doi: 10.1016/j.biortech.2020.123701
|
[25] |
LI L, LIU Y. Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics [J]. Journal of Hazardous Materials, 2009, 161(2/3): 1010-1016.
|
[26] |
F ARAÚJO K C, P BARRETO J P, CARDOZO J C, et al. Sulfate pollution: Evidence for electrochemical production of persulfate by oxidizing sulfate released by the surfactant sodium dodecyl sulfate [J]. Environmental Chemistry Letters, 2018, 16(2): 647-652. doi: 10.1007/s10311-017-0703-6
|
[27] |
刘敏. 氨氮电氧化技术及其在养猪废水中的应用研究[D]. 上海: 上海大学, 2014.
LIU M. Electro-oxidation technology for ammonia removal and its application in swine wastewater[D]. Shanghai: Shanghai University, 2014(in Chinese).
|
[28] |
戴慧旺, 陈建新, 苗笑增, 等. 醇类对UV-Fenton体系羟基自由基淬灭效率的影响 [J]. 中国环境科学, 2018, 38(1): 202-209. doi: 10.3969/j.issn.1000-6923.2018.01.024
DAI H W, CHEN J X, MIAO X Z, et al. Effect of alcohols on scavenging efficiencies to hydroxyl radical in UV-Fenton system [J]. China Environmental Science, 2018, 38(1): 202-209(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.01.024
|
[29] |
林晓璇, 孔青青, 曾泳钦, 等. 酮洛芬在臭氧作用下的降解机制、产物及毒性 [J]. 环境化学, 2018, 37(5): 1063-1070.
LIN X X, KONG Q Q, ZENG Y Q, et al. Study on mechanism, intermediates and toxicity of ketoprofen degradation by ozone [J]. Environmental Chemistry, 2018, 37(5): 1063-1070(in Chinese).
|