[1] VALAVANIDIS A, FIOTAKIS K, VLACHOGIANNI T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms [J]. Journal of Environmental Science and Health, Part C, 2008, 26(4): 339-362. doi: 10.1080/10590500802494538
[2] MERIKANTO J, SPRACKLEN D V, MANN G W, et al. Impact of nucleation on global CCN [J]. Atmospheric Chemistry and Physics, 2009, 9(21): 8601-8616. doi: 10.5194/acp-9-8601-2009
[3] DENG C J, FU Y Y, DADA L, et al. Seasonal characteristics of new particle formation and growth in urban Beijing [J]. Environmental Science & Technology, 2020, 54(14): 8547-8557.
[4] LI X X, LI Y Y, LAWLER M J, et al. Composition of ultrafine particles in urban Beijing: Measurement using a thermal desorption chemical ionization mass spectrometer [J]. Environmental Science & Technology, 2021, 55(5): 2859-2868.
[5] KUMAR P, MORAWSKA L, BIRMILI W, et al. Ultrafine particles in cities [J]. Environment International, 2014, 66: 1-10. doi: 10.1016/j.envint.2014.01.013
[6] ZHANG R Y, KHALIZOV A, WANG L, et al. Nucleation and growth of nanoparticles in the atmosphere [J]. Chemical Reviews, 2012, 112(3): 1957-2011. doi: 10.1021/cr2001756
[7] BIRMILI W, WIEDENSOHLER A. New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence [J]. Geophysical Research Letters, 2000, 27(20): 3325-3328. doi: 10.1029/1999GL011221
[8] 中华人民共和国环境保护部, 轻型汽车污染物排放限值及测量方法(中国第五阶段). 2013.
[9] 中华人民共和国环境保护部, 重型柴油车污染物排放限值及测量方法(中国第六阶段). 2019.
[10] ZHANG X L, CHEN X, WANG J. A number-based inventory of size-resolved black carbon particle emissions by global civil aviation [J]. Nature Communications, 2019, 10: 534. doi: 10.1038/s41467-019-08491-9
[11] LI X X, ZHAO B, ZHOU W, et al. Responses of gaseous sulfuric acid and particulate sulfate to reduced SO2 concentration: A perspective from long-term measurements in Beijing [J]. Science of the Total Environment, 2020, 721: 137700. doi: 10.1016/j.scitotenv.2020.137700
[12] LI T Z, CHEN X D, YAN Z X. Comparison of fine particles emissions of light-duty gasoline vehicles from chassis dynamometer tests and on-road measurements [J]. Atmospheric Environment, 2013, 68: 82-91. doi: 10.1016/j.atmosenv.2012.11.031
[13] SHI J P, HARRISON R M. Investigation of ultrafine particle formation during diesel exhaust dilution [J]. Environmental Science & Technology, 1999, 33(21): 3730-3736.
[14] CARPENTIERI M, KUMAR P. Ground-fixed and on-board measurements of nanoparticles in the wake of a moving vehicle [J]. Atmospheric Environment, 2011, 45(32): 5837-5852. doi: 10.1016/j.atmosenv.2011.06.079
[15] VOGT R, SCHEER V, CASATI R, et al. On-road measurement of particle emission in the exhaust plume of a diesel passenger car [J]. Environmental Science & Technology, 2003, 37(18): 4070-4076.
[16] GIECHASKIEL B, NTZIACHRISTOS L, SAMARAS Z, et al. Formation potential of vehicle exhaust nucleation mode particles on-road and in the laboratory [J]. Atmospheric Environment, 2005, 39(18): 3191-3198. doi: 10.1016/j.atmosenv.2005.02.019
[17] BISWAS S, HU S H, VERMA V, et al. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced PM and NOx emission control technologies [J]. Atmospheric Environment, 2008, 42(22): 5622-5634. doi: 10.1016/j.atmosenv.2008.03.007
[18] HOSSEINI S, LI Q, COCKER D, et al. Particle size distributions from laboratory-scale biomass fires using fast response instruments [J]. Atmospheric Chemistry and Physics, 2010, 10(16): 8065-8076. doi: 10.5194/acp-10-8065-2010
[19] TISSARI J, LYYRÄNEN J, HYTÖNEN K, et al. Fine particle and gaseous emissions from normal and smouldering wood combustion in a conventional masonry heater [J]. Atmospheric Environment, 2008, 42(34): 7862-7873. doi: 10.1016/j.atmosenv.2008.07.019
[20] WARDOYO A Y P, MORAWSKA L, RISTOVSKI Z D, et al. Quantification of particle number and mass emission factors from combustion of Queensland trees [J]. Environmental Science & Technology, 2006, 40(18): 5696-5703.
[21] WIINIKKA H, GEBART R. Critical parameters for particle emissions in small-scale fixed-bed combustion of wood pellets [J]. Energy & Fuels, 2004, 18(4): 897-907.
[22] TIWARI M, SAHU S K, BHANGARE R C, et al. Particle size distributions of ultrafine combustion aerosols generated from household fuels [J]. Atmospheric Pollution Research, 2014, 5(1): 145-150. doi: 10.5094/APR.2014.018
[23] ZHANG H F, WANG S X, HAO J M, et al. Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, China [J]. Atmospheric Environment, 2012, 51: 94-99. doi: 10.1016/j.atmosenv.2012.01.042
[24] ZHANG H F, ZHU T, WANG S X, et al. Indoor emissions of carbonaceous aerosol and other air pollutants from household fuel burning in southwest China [J]. Aerosol and Air Quality Research, 2014, 14(6): 1779-1788. doi: 10.4209/aaqr.2013.10.0305
[25] ZHOU W, JIANG J K, DUAN L, et al. Evolution of submicrometer organic aerosols during a complete residential coal combustion process [J]. Environmental Science & Technology, 2016, 50(14): 7861-7869.
[26] GAO Q, LI S Q, YANG M M, et al. Measurement and numerical simulation of ultrafine particle size distribution in the early stage of high-sodium lignite combustion [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2083-2090. doi: 10.1016/j.proci.2016.07.085
[27] MASEKAMENI D M, BROUWER D, MAKONESE T, et al. Size distribution of ultrafine particles generated from residential fixed-bed coal combustion in a typical brazier [J]. Aerosol and Air Quality Research, 2018, 18(10): 2618-2632. doi: 10.4209/aaqr.2018.03.0105
[28] BUONANNO G, MORAWSKA L, STABILE L. Particle emission factors during cooking activities [J]. Atmospheric Environment, 2009, 43(20): 3235-3242. doi: 10.1016/j.atmosenv.2009.03.044
[29] BUONANNO G, JOHNSON G, MORAWSKA L, et al. Volatility characterization of cooking-generated aerosol particles [J]. Aerosol Science and Technology, 2011, 45(9): 1069-1077. doi: 10.1080/02786826.2011.580797
[30] DENNEKAMP M. Ultrafine particles and nitrogen oxides generated by gas and electric cooking [J]. Occupational and Environmental Medicine, 2001, 58(8): 511-516. doi: 10.1136/oem.58.8.511
[31] LI C S, LIN W H, JENQ F T. Size distributions of submicrometer aerosols from cooking [J]. Environment International, 1993, 19(2): 147-154. doi: 10.1016/0160-4120(93)90365-O
[32] YEUNG L L, TO W M. Size distributions of the aerosols emitted from commercial cooking processes [J]. Indoor and Built Environment, 2008, 17(3): 220-229. doi: 10.1177/1420326X08092043
[33] MATTI MARICQ M. Chemical characterization of particulate emissions from diesel engines: A review [J]. Journal of Aerosol Science, 2007, 38(11): 1079-1118. doi: 10.1016/j.jaerosci.2007.08.001
[34] RÖNKKÖ T, TIMONEN H. Overview of sources and characteristics of nanoparticles in urban traffic-influenced areas [J]. Journal of Alzheimer's Disease, 2019, 72(1): 15-28. doi: 10.3233/JAD-190170
[35] HALLQUIST M, WENGER J C, BALTENSPERGER U, et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues [J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5155-5236. doi: 10.5194/acp-9-5155-2009
[36] 李庆, 段雷, 蒋靖坤, 等. 我国民用燃煤一次颗粒物的减排潜力研究 [J]. 中国电机工程学报, 2016, 36(16): 4408-4414, 4527. LI Q, DUAN L, JIANG J K, et al. Investigation of reducing potential for primary particulate emission from residential coal combustion in China [J]. Proceedings of the CSEE, 2016, 36(16): 4408-4414, 4527(in Chinese).
[37] LOBO P, DURDINA L, SMALLWOOD G J, et al. Measurement of aircraft engine non-volatile PM emissions: Results of the aviation-particle regulatory instrumentation demonstration experiment (A-PRIDE) 4 campaign [J]. Aerosol Science and Technology, 2015, 49(7): 472-484. doi: 10.1080/02786826.2015.1047012
[38] KUITTINEN N, JALKANEN J-P, ALANEN J, et al. Shipping remains a globally significant source of anthropogenic pn emissions even after 2020 sulfur regulation [J]. Environmental Science & Technology, 2021, 55(1): 129-138.
[39] JONSSON Å M, WESTERLUND J, HALLQUIST M. Size-resolved particle emission factors for individual ships [J]. Geophysical Research Letters, 2011, 38(13): L13809. doi: 10.1029/2011gl047672
[40] WANG Z B, HU M, WU Z J, et al. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing [J]. Atmospheric Chemistry and Physics, 2013, 13(20): 10159-10170. doi: 10.5194/acp-13-10159-2013
[41] LIU Z R, HU B, ZHANG J K, et al. Characterization of fine particles during the 2014 Asia-Pacific economic cooperation summit: Number concentration, size distribution and sources [J]. Tellus B:Chemical and Physical Meteorology, 2017, 69(1): 1303228. doi: 10.1080/16000889.2017.1303228
[42] ZHU R C, HU J N, BAO X F, et al. Tailpipe emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles at both low and high ambient temperatures [J]. Environmental Pollution, 2016, 216: 223-234. doi: 10.1016/j.envpol.2016.05.066
[43] HARRIS S J, MARICQ M M. Signature size distributions for diesel and gasoline engine exhaust particulate matter [J]. Journal of Aerosol Science, 2001, 32(6): 749-764. doi: 10.1016/S0021-8502(00)00111-7
[44] JETTER J, ZHAO Y X, SMITH K R, et al. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards [J]. Environmental Science & Technology, 2012, 46(19): 10827-10834.
[45] LESKINEN J, TISSARI J, USKI O, et al. Fine particle emissions in three different combustion conditions of a wood chip-fired appliance - Particulate physico-chemical properties and induced cell death [J]. Atmospheric Environment, 2014, 86: 129-139. doi: 10.1016/j.atmosenv.2013.12.012
[46] ROSE EILENBERG S, BILSBACK K R, JOHNSON M, et al. Field measurements of solid-fuel cookstove emissions from uncontrolled cooking in China, Honduras, Uganda, and India [J]. Atmospheric Environment, 2018, 190: 116-125. doi: 10.1016/j.atmosenv.2018.06.041
[47] OBAIDULLAH M, BRAM S, RUYCK J D. An overview of PM formation mechanisms from residential biomass combustion and instruments using in PM measurements[J]. International Journal 0f Energy and Environment, 2018, 12: 326972696.
[48] ABDULLAHI K L, DELGADO-SABORIT J M, HARRISON R M. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review [J]. Atmospheric Environment, 2013, 71: 260-294. doi: 10.1016/j.atmosenv.2013.01.061
[49] KUMAR P, PIRJOLA L, KETZEL M, et al. Nanoparticle emissions from 11 non-vehicle exhaust sources - A review [J]. Atmospheric Environment, 2013, 67: 252-277. doi: 10.1016/j.atmosenv.2012.11.011
[50] 王东滨, 郝吉明, 蒋靖坤. 民用固体燃料燃烧超细颗粒物排放及其潜在健康影响 [J]. 科学通报, 2019, 64(33): 3429-3440. WANG D B, HAO J M, JIANG J K. Ultrafine particle emission and its potential health risk from residential solid fuel combustion [J]. Chinese Science Bulletin, 2019, 64(33): 3429-3440(in Chinese).
[51] LIGHTY J S, VERANTH J M, SAROFIM A F. Combustion aerosols: Factors governing their size and composition and implications to human health [J]. Journal of the Air & Waste Management Association, 2000, 50(9): 1565-1618.
[52] MORAWSKA L, ZHANG J. Combustion sources of particles. 1. Health relevance and source signatures [J]. Chemosphere, 2002, 49(9): 1045-1058. doi: 10.1016/S0045-6535(02)00241-2
[53] SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 5. C1–C32 organic compounds from gasoline-powered motor vehicles [J]. Environmental Science & Technology, 2002, 36(6): 1169-1180.
[54] SCHAUER J J, ROGGE W F, HILDEMANN L M, et al. Source apportionment of airborne particulate matter using organic compounds as tracers [J]. Atmospheric Environment, 1996, 30(22): 3837-3855. doi: 10.1016/1352-2310(96)00085-4
[55] KLEEMAN M J, SCHAUER J J, CASS G R. Size and composition distribution of fine particulate matter emitted from motor vehicles [J]. Environmental Science & Technology, 2000, 34(7): 1132-1142.
[56] HUANG X D, OLMEZ I, ARAS N K, et al. Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile [J]. Atmospheric Environment, 1994, 28(8): 1385-1391. doi: 10.1016/1352-2310(94)90201-1
[57] SIMONEIT B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion [J]. Applied Geochemistry, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0
[58] MORAWSKA L, RISTOVSKI Z, JAYARATNE E R, et al. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure [J]. Atmospheric Environment, 2008, 42(35): 8113-8138. doi: 10.1016/j.atmosenv.2008.07.050
[59] ZHU Y F, HINDS W C, KIM S, et al. Study of ultrafine particles near a major highway with heavy-duty diesel traffic [J]. Atmospheric Environment, 2002, 36(27): 4323-4335. doi: 10.1016/S1352-2310(02)00354-0
[60] BARONE T L, ZHU Y F. The morphology of ultrafine particles on and near major freeways [J]. Atmospheric Environment, 2008, 42(28): 6749-6758. doi: 10.1016/j.atmosenv.2008.05.019
[61] ZHAO J, KHALIZOV A, ZHANG R Y, et al. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors [J]. The Journal of Physical Chemistry A, 2009, 113(4): 680-689. doi: 10.1021/jp806693r
[62] SCHOBESBERGER S, JUNNINEN H, BIANCHI F, et al. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules [J]. PNAS, 2013, 110(43): 17223-17228. doi: 10.1073/pnas.1306973110
[63] CHEN M D, TITCOMBE M, JIANG J K, et al. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer [J]. PNAS, 2012, 109(46): 18713-18718. doi: 10.1073/pnas.1210285109
[64] BIANCHI F, PRAPLAN A P, SARNELA N, et al. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters [J]. Environmental Science & Technology, 2014, 48(23): 13675-13684.
[65] YAO L, GARMASH O, BIANCHI F, et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity [J]. Science, 2018, 361(6399): 278-281. doi: 10.1126/science.aao4839
[66] CAI R L, YAN C, YANG D S, et al. Sulfuric acid–amine nucleation in urban Beijing [J]. Atmospheric Chemistry and Physics, 2021, 21(4): 2457-2468. doi: 10.5194/acp-21-2457-2021
[67] DAWSON M L, VARNER M E, PERRAUD V, et al. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations [J]. PNAS, 2012, 109(46): 18719-18724. doi: 10.1073/pnas.1211878109
[68] WANG M Y, KONG W M, MARTEN R, et al. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation [J]. Nature, 2020, 581(7807): 184-189. doi: 10.1038/s41586-020-2270-4
[69] DONAHUE N M, KROLL J H, PANDIS S N, et al. A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution [J]. Atmospheric Chemistry and Physics, 2012, 12(2): 615-634. doi: 10.5194/acp-12-615-2012
[70] DONAHUE N M, ROBINSON A L, PANDIS S N. Atmospheric organic particulate matter: From smoke to secondary organic aerosol [J]. Atmospheric Environment, 2009, 43(1): 94-106. doi: 10.1016/j.atmosenv.2008.09.055
[71] LI Q, JIANG J K, HAO J M. A review of aerosol nanoparticle formation from ions [J]. KONA Powder and Particle Journal, 2015, 32: 57-74. doi: 10.14356/kona.2015013
[72] HIRSIKKO A, NIEMINEN T, GAGNÉ S, et al. Atmospheric ions and nucleation: A review of observations [J]. Atmospheric Chemistry and Physics, 2011, 11(2): 767-798. doi: 10.5194/acp-11-767-2011
[73] MANNINEN H E, NIEMINEN T, ASMI E, et al. EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events [J]. Atmospheric Chemistry and Physics, 2010, 10(16): 7907-7927. doi: 10.5194/acp-10-7907-2010
[74] ARNOLD F. Atmospheric ions and aerosol formation [J]. Space Science Reviews, 2008, 137(1/2/3/4): 225-239.
[75] KULMALA M, VEHKAMÄKI H, PETÄJÄ T, et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations [J]. Journal of Aerosol Science, 2004, 35(2): 143-176. doi: 10.1016/j.jaerosci.2003.10.003
[76] CAI R L, JIANG J K. A new balance formula to estimate new particle formation rate: Reevaluating the effect of coagulation scavenging [J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12659-12675. doi: 10.5194/acp-17-12659-2017
[77] DENG C J, CAI R L, YAN C, et al. Formation and growth of sub-3 nm particles in megacities: Impact of background aerosols [J]. Faraday Discussions, 2021, 226: 348-363. doi: 10.1039/D0FD00083C
[78] CAI R L, YANG D S, FU Y Y, et al. Aerosol surface area concentration: A governing factor in new particle formation in Beijing [J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12327-12340. doi: 10.5194/acp-17-12327-2017
[79] WINKLER P M, ORTEGA J, KARL T, et al. Identification of the biogenic compounds responsible for size-dependent nanoparticle growth [J]. Geophysical Research Letters, 2012, 39(20): 2012GL053253. doi: 10.1029/2012GL053253
[80] EHN M, THORNTON J A, KLEIST E, et al. A large source of low-volatility secondary organic aerosol [J]. Nature, 2014, 506(7489): 476-479. doi: 10.1038/nature13032
[81] MARPLE V A, RUBOW K L, BEHM S M. A microorifice uniform deposit impactor (MOUDI): Description, calibration, and use [J]. Aerosol Science and Technology, 1991, 14(4): 434-446. doi: 10.1080/02786829108959504
[82] MISRA C, KIM S, SHEN S, et al. A high flow rate, very low pressure drop impactor for inertial separation of ultrafine from accumulation mode particles [J]. Journal of Aerosol Science, 2002, 33(5): 735-752. doi: 10.1016/S0021-8502(01)00210-5
[83] SMITH J N, DRAPER D C, CHEE S, et al. Atmospheric clusters to nanoparticles: Recent progress and challenges in closing the gap in chemical composition [J]. Journal of Aerosol Science, 2021, 153: 105733. doi: 10.1016/j.jaerosci.2020.105733
[84] WAGNER A C, BERGEN A, BRILKE S, et al. Size-resolved online chemical analysis of nanoaerosol particles: A thermal desorption differential mobility analyzer coupled to a chemical ionization time-of-flight mass spectrometer [J]. Atmospheric Measurement Techniques, 2018, 11(10): 5489-5506. doi: 10.5194/amt-11-5489-2018
[85] 陈岩, 王炜罡, 刘明元, 等. 纳米颗粒物化学成分测量技术及其应用 [J]. 大气与环境光学学报, 2020, 15(6): 402-412. CHEN Y, WANG W G, LIU M Y, et al. Measurement technologies of nanoparticle chemical composition and their application [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 402-412(in Chinese).
[86] VOISIN D, SMITH J N, SAKURAI H, et al. Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical composition [J]. Aerosol Science and Technology, 2003, 37(6): 471-475. doi: 10.1080/02786820300959
[87] SMITH J N, MOORE K F, MCMURRY P H, et al. Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry [J]. Aerosol Science and Technology, 2004, 38(2): 100-110. doi: 10.1080/02786820490249036
[88] ZHANG R Y, WANG L, KHALIZOV A F, et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution [J]. PNAS, 2009, 106(42): 17650-17654. doi: 10.1073/pnas.0910125106
[89] GONSER S G, HELD A. A chemical analyzer for charged ultrafine particles [J]. Atmospheric Measurement Techniques, 2013, 6(9): 2339-2348. doi: 10.5194/amt-6-2339-2013
[90] WANG S Y, JOHNSTON M V. Airborne nanoparticle characterization with a digital ion trap-reflectron time of flight mass spectrometer [J]. International Journal of Mass Spectrometry, 2006, 258(1/2/3): 50-57.
[91] LOPEZ-HILFIKER F D, MOHR C, EHN M, et al. A novel method for online analysis of gas and particle composition: Description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO) [J]. Atmospheric Measurement Techniques, 2014, 7(4): 983-1001. doi: 10.5194/amt-7-983-2014
[92] LOPEZ-HILFIKER F D, POSPISILOVA V, HUANG W, et al. An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles [J]. Atmospheric Measurement Techniques, 2019, 12(9): 4867-4886. doi: 10.5194/amt-12-4867-2019
[93] LEE C P, RIVA M, WANG D Y, et al. Online aerosol chemical characterization by extractive electrospray ionization-ultrahigh-resolution mass spectrometry (EESI-orbitrap) [J]. Environmental Science & Technology, 2020, 54(7): 3871-3880.
[94] MASSLING A, STOCK M, WEHNER B, et al. Size segregated water uptake of the urban submicrometer aerosol in Beijing [J]. Atmospheric Environment, 2009, 43(8): 1578-1589. doi: 10.1016/j.atmosenv.2008.06.003
[95] MEIER J, WEHNER B, MASSLING A, et al. Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: A comparison of three experimental methods [J]. Atmospheric Chemistry and Physics, 2009, 9(18): 6865-6880. doi: 10.5194/acp-9-6865-2009
[96] ZHAO P S, CHEN Y N, SU J. Size-resolved carbonaceous components and water-soluble ions measurements of ambient aerosol in Beijing [J]. Journal of Environmental Sciences, 2017, 54: 298-313. doi: 10.1016/j.jes.2016.08.027
[97] ZHAO P S, DU X, SU J, et al. Aerosol hygroscopicity based on size-resolved chemical compositions in Beijing [J]. Science of the Total Environment, 2020, 716: 137074. doi: 10.1016/j.scitotenv.2020.137074
[98] SUN K, QU Y, WU Q, et al. Chemical characteristics of size-resolved aerosols in winter in Beijing [J]. Journal of Environmental Sciences, 2014, 26(8): 1641-1650. doi: 10.1016/j.jes.2014.06.004
[99] HERNER J D, AW, GAO, et al. Copyright 2005 air & waste management association size and composition distribution of airborne particulate matter in northern California: I—particulate mass, carbon, and water-soluble ions [J]. Journal of the Air & Waste Management Association, 2005, 55(1): 30-51.
[100] CHOW J C, WATSON J G, LOWENTHAL D H, et al. Size-resolved aerosol chemical concentrations at rural and urban sites in Central California, USA [J]. Atmospheric Research, 2008, 90(2/3/4): 243-252.
[101] DING X X, KONG L D, DU C T, et al. Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai [J]. Science of the Total Environment, 2017, 583: 334-343. doi: 10.1016/j.scitotenv.2017.01.073
[102] CHEN S C, TSAI C J, HUANG C Y, et al. Chemical mass closure and chemical characteristics of ambient ultrafine particles and other PM fractions [J]. Aerosol Science and Technology, 2010, 44(9): 713-723. doi: 10.1080/02786826.2010.486385
[103] CASS G R, HUGHES L A, BHAVE P, et al. The chemical composition of atmospheric ultrafine particles [J]. Philosophical Transactions of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 2000, 358(1775): 2581-2592. doi: 10.1098/rsta.2000.0670
[104] CABADA J C, REES S, TAKAHAMA S, et al. Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite [J]. Atmospheric Environment, 2004, 38(20): 3127-3141. doi: 10.1016/j.atmosenv.2004.03.004
[105] SMITH J N, MOORE K F, EISELE F L, et al. Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta [J]. Journal of Geophysical Research Atmospheres, 2005, 110(D22): D22S03.
[106] SMITH J N, DUNN M J, VANREKEN T M, et al. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth [J]. Geophysical Research Letters, 2008, 35(4): L04808.
[107] LAWLER M J, RISSANEN M P, EHN M, et al. Evidence for diverse biogeochemical drivers of boreal forest new particle formation [J]. Geophysical Research Letters, 2018, 45(4): 2038-2046. doi: 10.1002/2017GL076394
[108] LAWLER M J, WHITEHEAD J, O'DOWD C, et al. Composition of 15–85 nm particles in marine air [J]. Atmospheric Chemistry and Physics, 2014, 14(21): 11557-11569. doi: 10.5194/acp-14-11557-2014
[109] BZDEK B R, LAWLER M J, HORAN A J, et al. Molecular constraints on particle growth during new particle formation [J]. Geophysical Research Letters, 2014, 41(16): 6045-6054. doi: 10.1002/2014GL060160
[110] SMITH J N, BARSANTI K C, FRIEDLI H R, et al. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications [J]. PNAS, 2010, 107(15): 6634-6639. doi: 10.1073/pnas.0912127107
[111] HODSHIRE A L, LAWLER M J, ZHAO J, et al. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site [J]. Atmospheric Chemistry and Physics, 2016, 16(14): 9321-9348. doi: 10.5194/acp-16-9321-2016
[112] HAM W A, KLEEMAN M J. Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in central California [J]. Atmospheric Environment, 2011, 45(24): 3988-3995. doi: 10.1016/j.atmosenv.2011.04.063
[113] KLEEMAN M J, RIDDLE S G, ROBERT M A, et al. Source apportionment of fine (PM1. 8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode [J]. Environmental Science & Technology, 2009, 43(2): 272-279.
[114] XUE J, XUE W, SOWLAT M H, et al. Seasonal and annual source appointment of carbonaceous ultrafine particulate matter (PM0.1) in polluted California cities [J]. Environmental Science & Technology, 2019, 53(1): 39-49.
[115] GLICKER H S, LAWLER M J, ORTEGA J, et al. Chemical composition of ultrafine aerosol particles in central Amazonia during the wet season [J]. Atmospheric Chemistry and Physics, 2019, 19(20): 13053-13066. doi: 10.5194/acp-19-13053-2019
[116] LAWLER M J, DRAPER D C, SMITH J N. Atmospheric fungal nanoparticle bursts [J]. Science Advances, 2020, 6(3): eaax9051. doi: 10.1126/sciadv.aax9051
[117] BRINES M, DALL'OSTO M, BEDDOWS D C S, et al. Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities [J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5929-5945. doi: 10.5194/acp-15-5929-2015
[118] KONTKANEN J, DENG C J, FU Y Y, et al. Size-resolved particle number emissions in Beijing determined from measured particle size distributions [J]. Atmospheric Chemistry and Physics, 2020, 20(19): 11329-11348. doi: 10.5194/acp-20-11329-2020