[1] ROSENTHAL S J. Bar-coding biomolecules with fluorescent nanocrystals [J]. Nature Biotechnology, 2001, 19(7): 621-622. doi: 10.1038/90213
[2] CHAN W C, NIE S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018.
[3] BRUCHEZ M, MORONNE M, GIN P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281(5385): 2013-2016. doi: 10.1126/science.281.5385.2013
[4] INSTITUTE Y R. Global Markets of quantum dot displays/components: Key research findings 2018[EB/OL].[2019-5-27]. Tokyo: Yano Research Institute Ltd, 2018(2018-3-28).https://www.yanoresearch.com/en/press-release/show/press_id/1813.
[5] 章晨. 硒化镉量子点对人成纤维上皮细胞的毒理学研究[D]. 杭州: 浙江大学, 2011. ZHANG C. The cytotoxic and genotoxic effects of CdSe quantum dots on human skin fibroblasts cell(HSF-42)[D]. Hangzhou: Zhejiang University, 2011 (in Chinese).
[6] 宋方茗. 硒化镉量子点对人皮肤细胞的毒性效应研究[D]. 上海: 第二军医大学, 2010. SONG F M. Study on the toxicity of CdSe/ZnS quantum dots to the human skin cells[D]. Shanghai: The Second Military Medical University, 2010 (in Chinese).
[7] CHEN M, HUANG C, PU D, et al. Toxic effects of CdSe/ZnS QDs to zebrafish embryos [J]. Environmental Science, 2015, 2(36): 719-726.
[8] WERLIN R, PRIESTER J H, MIELKE R E, et al. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain [J]. Nature Nanotechnology, 2010, 6: 65.
[9] BOULDIN J L, INGLE T M, SENGUPTA A, et al. Aqueous toxicity and food chain transfer of Quantum DOTs in freshwater algae and Ceriodaphnia dubia [J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1958-1963. doi: 10.1897/07-637.1
[10] NAVARRO D A, BISSON M A, AGA D S. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants [J]. Journal of Hazardous Materials, 2012, 211-212: 427-435. doi: 10.1016/j.jhazmat.2011.12.012
[11] KLAINE S J, ALVAREZ P J J, BATLEY G E, et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects [J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1825-1851. doi: 10.1897/08-090.1
[12] 徐冬梅, 王艳花, 饶桂维. 四环素类抗生素对淡水绿藻的毒性作用 [J]. 环境科学, 2013, 34(9): 3386-3390. XU D M, WANG Y H, RAO G W. Cellular response of freshwater green algae to the toxicity of tetracycline antibiotics [J]. Environmental Science, 2013, 34(9): 3386-3390(in Chinese).
[13] 梁长华. 纳米NiO对小球藻的生物毒性及致毒机制研究[D]. 大连: 大连海事大学, 2010. LIANG C H. Research on biotoxicity and toxic mechanism of NiO nanoparticles on Chlorella vulgaris[D]. Dalian: Dalian Maritime University, 2010 (in Chinese).
[14] LIU J, SUN Z, LAVOIE M, et al. Ammonium reduces chromium toxicity in the freshwater alga Chlorella vulgaris [J]. Applied Microbiology and Biotechnology, 2015(7): 3249-3258.
[15] LIBRALATO G, GALDIERO E, FALANGA A, et al. Toxicity effects of functionalized quantum dots, gold and polystyrene nanoparticles on target aquatic biological models: A review [J]. Molecules (Basel, Switzerland), 2017, 22(9): 1439. doi: 10.3390/molecules22091439
[16] FARRÉ M, GAJDA-SCHRANTZ K, KANTIANI L, et al. Ecotoxicity and analysis of nanomaterials in the aquatic environment [J]. Analytical and Bioanalytical Chemistry, 2009, 393(1): 81-95. doi: 10.1007/s00216-008-2458-1
[17] 雷静静, 冯佳, 谢树莲. 纳米氧化镍对3种绿藻的毒性效应 [J]. 中国环境科学, 2013, 33(10): 1842-1849. LEI J J, FENG J, XIE S L. Toxic effects of nNiO on three species of green algae [J]. China Environmental Science, 2013, 33(10): 1842-1849(in Chinese).
[18] ZHOU H, WANG X, ZHOU Y, et al. Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach [J]. Anal Bioanal Chem, 2014, 406(15): 3689-3695. doi: 10.1007/s00216-014-7773-0
[19] SUMAN T Y, RAJASREE S R R, KIRUBAGARAN R. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis [J]. Ecotoxicology and Environmental Safety, 2015, 113: 23-30. doi: 10.1016/j.ecoenv.2014.11.015
[20] DA ROCHA A, MENGUY N, YÉPRÉMIAN C, et al. Ecotoxicological studies of ZnO and CdS nanoparticles on Chlorella vulgaris photosynthetic microorganism in Seine River water [J]. Nanomaterials, 2020, 10(2): 227. doi: 10.3390/nano10020227
[21] MIDDEPOGU A, HOU J, GAO X, et al. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa [J]. Ecotoxicology and Environmental Safety, 2018, 161: 497-506. doi: 10.1016/j.ecoenv.2018.06.027
[22] JI J, LONG Z, LIN D. Toxicity of oxide nanoparticles to the green algae Chlorella sp. [J]. Chemical Engineering Journal, 2011, 170(2-3): 525-530. doi: 10.1016/j.cej.2010.11.026
[23] ZHAO J, CAO X, WANG Z, et al. Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae [J]. Water Research, 2017, 111: 18-27. doi: 10.1016/j.watres.2016.12.037
[24] 姜慧, 丁婷婷, 张瑾, 等. 3种有机溶剂及其混合物对蛋白核小球藻时间毒性的探究 [J]. 安徽农业大学学报, 2018, 45(3): 480-486. JIANG H, DING T T, ZHANG J, et al. The time-dependent toxicity of three organic solvents and their mixtures towards Chlorella pyrenoidosa [J]. Journal of Anhui Agricultural University, 2018, 45(3): 480-486(in Chinese).
[25] 熊忠亮, 乔军晶. 流式细胞仪在活体微藻计数中的应用 [J]. 山东化工, 2018, 47(1): 143-145. doi: 10.3969/j.issn.1008-021X.2018.01.064 XIONG Z L, QIAO J J. Application of flow cytometry in living microalgae count [J]. Shandong Chemical Industry, 2018, 47(1): 143-145(in Chinese). doi: 10.3969/j.issn.1008-021X.2018.01.064
[26] 王执伟, 刘冬梅, 张文娟, 等. 溴酸盐对普通小球藻的生长以及生理特性的影响 [J]. 环境科学, 2016, 37(6): 2158-2163. WANG Z W, LIU D M, ZHANG W J, et al. Effects of bromate on the growth and physiological characteristics of Chlorella vulgaris [J]. Environmental Science, 2016, 37(6): 2158-2163(in Chinese).
[27] YU Y, KONG F, WANG M, et al. Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry [J]. Ecotoxicology and Environmental Safety, 2007, 66(1): 49-56. doi: 10.1016/j.ecoenv.2005.10.014
[28] LIU W, CHEN S, QUAN X, et al. Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry [J]. Environmental Toxicology and Chemistry, 2008, 27(7): 1597-1604. doi: 10.1897/07-459.1
[29] NYHOLM N. Response variable in algal growth inhibition tests—Biomass or growth rate? [J]. Water Research, 1985, 19(3): 273-279. doi: 10.1016/0043-1354(85)90085-5
[30] ISO. 8692-1989-11-15 Water quality-fresh water water algal growth inhibition test with Scenedesmus subspicatus and Selenastrum capricornutum[S]. 1989.
[31] OECD. Guideline for testing of chemicals; No. 201: "Freshwater alga and cyanobacteria, growth inhibition[S]. Sophia University, 2006.
[32] 孙红羽, 张思玉, 赵冰, 等. 纳米硫酸铅对小球藻的毒性 [J]. 生态学杂志, 2019, 38(9): 2734-2740. SUN H Y, ZHANG S Y, ZHAO B, et al. Toxicity of lead sulfate nanoparticles to Chlorella vulgaris [J]. Chinese Journal of Ecology, 2019, 38(9): 2734-2740(in Chinese).
[33] 巩宁, 邵魁双, 王阳, 等. 两种粒径氧化镍纳米颗粒对小球藻(Chlorella vulgaris)的生物毒性 [J]. 海洋环境科学, 2011, 30(4): 457-460. doi: 10.3969/j.issn.1007-6336.2011.04.001 GONG N, SHAO K S, WANG Y, et al. Biotoxicity of two-size nickel oxide nanoparticles on Chlorella vulgaris [J]. Marine Environmental Science, 2011, 30(4): 457-460(in Chinese). doi: 10.3969/j.issn.1007-6336.2011.04.001
[34] TSEZOS M, VOLESKY B. Biosorption of uranium and thorium [J]. Biotechnology and Bioengineering, 1981, 23(3): 583-604. doi: 10.1002/bit.260230309
[35] 郑昊. 莱茵衣藻对纳米氧化铜在水环境中的分布规律及去除效能的影响[D]. 泰安: 山东农业大学, 2016. ZHENG H. Effects of Chlamydomonas reinhardtii on removal and distribution of CuO nanoparticle[D]. Taian: Shandong Agricultural University, 2016 (in Chinese).
[36] VIGNEAULT B, PERCOT A, LAFLEUR M, et al. Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances [J]. Environmental Science & Technology, 2000, 34(18): 3907-3913.
[37] SHI X L K F. Survival of Microcystis aeruginosa and Scenedesmus obliquus under dark anaerobic conditions [J]. Marine and Freshwater Research, 2007, 7(58): 634-639.
[38] HONG Y, HU H, LI F. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa [J]. Ecotoxicology and Environmental Safety, 2008, 71(2): 527-534. doi: 10.1016/j.ecoenv.2007.10.010
[39] STAUBER J L, FRANKLIN N M, ADAMS M S. Applications of flow cytometry to ecotoxicity testing using microalgae [J]. Trends in Biotechnology, 2002, 20(4): 141-143. doi: 10.1016/S0167-7799(01)01924-2
[40] 于洋, 孔繁翔, 钱蕾蕾, 等. 流式细胞术在铜对藻类生态毒理研究中的应用 [J]. 环境化学, 2004(5): 525-528. doi: 10.3321/j.issn:0254-6108.2004.05.009 YU Y, KONG F X, QIAN L L, et al. The application of flow cytometry in the study of copper-to-algae ecotoxicology [J]. Environmental Chemistry, 2004(5): 525-528(in Chinese). doi: 10.3321/j.issn:0254-6108.2004.05.009
[41] KOTTUPARAMBIL S, PARK J. Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter [J]. Scientific Reports, 2019, 9(1): 1-11.
[42] XIA B, CHEN B, SUN X, et al. Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization [J]. Science of the Total Environment, 2015, 508: 525-533. doi: 10.1016/j.scitotenv.2014.11.066
[43] MACHADO M D, LOPES A R, SOARES E V. Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress [J]. Journal of Hazardous Materials, 2015, 296: 82-92. doi: 10.1016/j.jhazmat.2015.04.022
[44] 苏文, 孔繁翔, 于洋, 等. 水稻秸秆浸泡液对铜绿微囊藻生理特性的影响 [J]. 环境科学, 2013, 34(1): 150-155. SU W, KONG F X, YU Y, et al. Effects of the rice straw on Microcystis aeruginosa analyzed by different physiological parameters [J]. Environmental Science, 2013, 34(1): 150-155(in Chinese).
[45] 岳磊, 张垚, 张楠曦. 流式细胞仪检测线粒体膜电位方法的研究 [J]. 哈尔滨商业大学学报(自然科学版), 2015, 31(4): 393-397. YUE L, ZHANG Y, ZHANG N X. Study on methods for detecting mitochondrial membrane potential by flow cytometry [J]. Journal of Harbin University of Commerce(Natural Sciences Edition), 2015, 31(4): 393-397(in Chinese).
[46] LIU W, AU D W T, ANDERSON D M, et al. Effects of nutrients, salinity, pH and light: Dark cycle on the production of reactive oxygen species in the alga Chattonella marina [J]. Journal of Experimental Marine Biology and Ecology, 2007, 346(1-2): 76-86. doi: 10.1016/j.jembe.2007.03.007
[47] SAISON C, PERREAULT F, DAIGLE J, et al. Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem Ⅱ energy distribution) in the green alga, Chlamydomonas reinhardtii [J]. Aquatic Toxicology, 2010, 96(2): 109-114. doi: 10.1016/j.aquatox.2009.10.002
[48] MORELLI E, CIONI P, POSARELLI M, et al. Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga [J]. Aquat Toxicol, 2012(122-123): 153-162.
[49] 范陈清. 叶绿素a荧光计设计与开发[D]. 青岛: 中国石油大学, 2009. FAN C Q. Design and development of chlorophyll a fluorometer[D]. Qingdao: China University of Petroleum, 2009 (in Chinese).
[50] OUYANG S, HU X, ZHOU Q. Envelopment–internalization synergistic effects and metabolic mechanisms of graphene oxide on single-cell Chlorella vulgaris are dependent on the nanomaterial particle size [J]. ACS Applied Materials & Interfaces, 2015, 7(32): 18104-18112.
[51] ZHANG M, WANG H, LIU P, et al. Biotoxicity of degradable carbon dots towards microalgae Chlorella vulgaris [J]. Environmental Science:Nano, 2019(11): 3316-3323.
[52] OUKARROUM A, ZAIDI W, SAMADANI M, et al. Toxicity of nickel oxide nanoparticles on a freshwater green algal strain of Chlorella vulgaris [J]. Biomed Res Int, 2017, 2017: 9528180.
[53] YAN K, LIU Y, YANG Q, et al. Evaluation of the novel nanoparticle material: CdSe quantum dots on Chlorella pyrenoidosa and Scenedesmus obliquus: Concentration-time-dependent responses [J]. Ecotoxicology and Environmental Safety, 2019, 171: 728-736. doi: 10.1016/j.ecoenv.2019.01.018
[54] NASON S L, MILLER E L, KARTHIKEYAN K G, et al. Plant-induced changes to rhizosphere pH impact leaf accumulation of lamotrigine but not carbamazepine [J]. Environmental Science & Technology Letters, 2018, 5(6): 377-381.
[55] 许银, 葛飞, 陶能国, 等. 十六烷基三甲基氯化铵抑制小球藻生长的效应及作用机制 [J]. 环境科学, 2009, 30(6): 1767-1772. doi: 10.3321/j.issn:0250-3301.2009.06.036 XU Y, GE F, TAO N G, et al. Growth inhibition and mechanism of cetyltrimethyl ammonium chloride on Chlorella vulgaris [J]. Environmental Science, 2009, 30(6): 1767-1772(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.06.036
[56] 傅佳骏, 严莲荷, 王瑛. 季鏻盐类杀菌剂的研究进展 [J]. 江苏化工, 2003, 31(6): 12-16. FU J J, YAN L H, WANG Y. Development of quaternary phosphonium salts as fungicides [J]. Jiangsu Chemical Industry, 2003, 31(6): 12-16(in Chinese).