[1] |
周东美, 王慎强, 陈怀满. 土壤中有机污染物-重金属复合污染的交互作用 [J]. 土壤与环境, 2000, 9(2): 143-145.
ZHOU D M, WANG S Q, CHEN H M. Interaction of organic pollutants and heavy metal in soil [J]. Soil and Environmental Sciences, 2000, 9(2): 143-145(in Chinese).
|
[2] |
王恒. 土壤重金属复合污染研究进展 [J]. 科技创新导报, 2016, 13(28): 71-72.
WANG H. Research progress of soil heavy metal compound pollution [J]. Science and Technology Innovation Herald, 2016, 13(28): 71-72(in Chinese).
|
[3] |
郑振华, 周培疆, 吴振斌. 复合污染研究的新进展 [J]. 应用生态学报, 2001, 12(3): 469-473. doi: 10.3321/j.issn:1001-9332.2001.03.037
ZHENG Z H, ZHOU P J, WU Z B. New advances in research of combined pollution [J]. Chinese Journal of Applied Ecology, 2001, 12(3): 469-473(in Chinese). doi: 10.3321/j.issn:1001-9332.2001.03.037
|
[4] |
窦晶晶. Cd、Cr单一及复合污染对赤子爱胜蚓的毒理研究[D]. 杨凌: 西北农林科技大学, 2015.
DOU J J. Individual and combined toxicity of cadmium and chromium on the earthworm Eisenia fetida[D]. Yangling, China: Northwest A & F University, 2015(in Chinese).
|
[5] |
JONES D L, DARAH P R, KOCHIAN L V. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake [J]. Plant and Soil, 1996, 180(1): 57-66. doi: 10.1007/BF00015411
|
[6] |
秦月华, 宋锡全. 有机重金属复合污染对香樟吸收营养离子的影响 [J]. 贵州师范大学学报(自然科学版), 2010, 28(1): 9-13.
QIN Y H, SONG X Q. Effects of organic pollutant and heavy metal complex pollution on nutrient ions absorption of Cinnamomum camphora [J]. Journal of Guizhou Normal University (Natural Sciences), 2010, 28(1): 9-13(in Chinese).
|
[7] |
LIU X L, ZHANG S Z, SHAN X Q, et al. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination [J]. Ecotoxicology and Environmental Safety, 2007, 68(2): 305-313. doi: 10.1016/j.ecoenv.2006.11.001
|
[8] |
王新, 梁仁禄, 周启星. Cd-Pb复合污染在土壤-水稻系统中生态效应的研究 [J]. 农村生态环境, 2001, 17(2): 41-44.
WANG X, LIANG R L, ZHOU Q X. Ecological effect of Cd Pb combined pollution on soil-rice system [J]. Rural Eco-Environment, 2001, 17(2): 41-44(in Chinese).
|
[9] |
GUO T R, ZHANG G P, ZHANG Y H. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium [J]. Colloids and Surfaces. B, Biointerfaces, 2007, 57(2): 182-188. doi: 10.1016/j.colsurfb.2007.01.013
|
[10] |
CAI Y M, XU W B, WANG M E, et al. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake [J]. Environmental Pollution, 2019, 253: 959-965. doi: 10.1016/j.envpol.2019.07.077
|
[11] |
梁瑞, 陈慧茹, 刘斌美, 等. 重金属复合污染对水稻镉吸收积累的影响 [J]. 生物学杂志, 2019, 36(03): 42-46. doi: 10.3969/j.issn.2095-1736.2019.03.042
LIANG R, CHEN H R, LIU B M, et al. Effect of heavy metal compound pollution on Cd uptake and accumulation in rice [J]. JOURNAL OF BIOLOGY, 2019, 36(03): 42-46(in Chinese). doi: 10.3969/j.issn.2095-1736.2019.03.042
|
[12] |
宇克莉, 孟庆敏, 邹金华. 镉对玉米幼苗生长、叶绿素含量及细胞超微结构的影响 [J]. 华北农学报, 2010, 25(3): 118-123. doi: 10.7668/hbnxb.2010.03.026
YU K L, MENG Q M, ZOU J H. Effects of Cd2+ on seedling growth, chlorophyll contents and ultrastructures in maize [J]. Acta Agriculturae Boreali-Sinica, 2010, 25(3): 118-123(in Chinese). doi: 10.7668/hbnxb.2010.03.026
|
[13] |
张嘉桐, 关颖慧, 司莉青, 等. Pb2+、Cd2+复合胁迫对桑树光合作用的影响 [J]. 北京林业大学学报, 2018, 40(4): 16-23.
ZHANG J T, GUAN Y H, SI L Q, et al. Effects of Pb2+and Cd2+combined stress on photosynthesis of Morus alba [J]. Journal of Beijing for Estry University, 2018, 40(4): 16-23(in Chinese).
|
[14] |
孟庆俊, 袁训珂, 冯启言, 等. 重金属复合污染对小麦幼苗生长的毒性效应 [J]. 安徽农业科学, 2008, 36(1): 122-124. doi: 10.3969/j.issn.0517-6611.2008.01.035
MENG Q J, YUAN X K, FENG Q Y, et al. Toxic effects of compound pollution with heavy metals on the growth of wheat seedlings [J]. Journal of Anhui Agricultural Sciences, 2008, 36(1): 122-124(in Chinese). doi: 10.3969/j.issn.0517-6611.2008.01.035
|
[15] |
铁柏清, 孙健, 钱湛, 等. 重金属复合污染对灯心草的生态毒性效应及重金属积累特性的影响 [J]. 农业环境科学学报, 2006, 25(3): 629-636. doi: 10.3321/j.issn:1672-2043.2006.03.018
TIE B Q, SUN J, QIAN Z, et al. The eco-toxicological effect of Cu, cd, pb, Zn and as compound pollution on Juncus effuses and its accumulation character of heavy metals [J]. Journal of Agro-Environment Science, 2006, 25(3): 629-636(in Chinese). doi: 10.3321/j.issn:1672-2043.2006.03.018
|
[16] |
SHAKYA K, CHETTRI M K, SAWIDIS T. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses [J]. Archives of Environmental Contamination and Toxicology, 2008, 54(3): 412-421. doi: 10.1007/s00244-007-9060-y
|
[17] |
MARIA G, CLAUDIO A S, RODRIGO A C, et al. Cadmium and/or copper excess induce interdependent metal accumulation, DNA methylation, induction of metal chelators and antioxidant defences in the seagrass Zostera marina [J]. Chemosphere, 2019, 224: 111-119. doi: 10.1016/j.chemosphere.2019.02.123
|
[18] |
SANTOS R W, SCHMIDT É C, BOUZON Z L. Changes in ultrastructure and cytochemistry of the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales) treated with cadmium [J]. Protoplasma, 2013, 250(1): 297-305. doi: 10.1007/s00709-012-0412-8
|
[19] |
LÖSCH R. Plant mitochondrial respiration under the influence of heavy metals[M]//Heavy Metal Stress in Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 182-200.
|
[20] |
刘登义, 王友保. Cu、As对作物种子萌发和幼苗生长影响的研究 [J]. 应用生态学报, 2002, 13(2): 179-182. doi: 10.3321/j.issn:1001-9332.2002.02.013
LIU D Y, WANG Y B. Effects of Cu and As on germination and seedling growth of crops [J]. Chinese Journal of Applied Ecology, 2002, 13(2): 179-182(in Chinese). doi: 10.3321/j.issn:1001-9332.2002.02.013
|
[21] |
谷巍, 施国新, 韩承辉, 等. 汞、镉污染对轮叶狐尾藻的毒害 [J]. 中国环境科学, 2001, 21(4): 371-375. doi: 10.3321/j.issn:1000-6923.2001.04.021
GU W, SHI G X, HAN C H, et al. The toxicity damage effect of Hg2+ and Cd2+ pollution on Myriophyllum verticillatum Linn [J]. China Environmental Science, 2001, 21(4): 371-375(in Chinese). doi: 10.3321/j.issn:1000-6923.2001.04.021
|
[22] |
李坤, 李琳, 侯和胜, 等. Cu2+、Cd2+、Zn2+对两种单胞藻的毒害作用 [J]. 应用与环境生物学报, 2002, 8(4): 395-398. doi: 10.3321/j.issn:1006-687X.2002.04.013
LI K, LI L, HOU H S, et al. Study on toxicity of heavy metal ions to two species of marine unicellular algae [J]. Chinese Journal of Applied and Environmental Biology, 2002, 8(4): 395-398(in Chinese). doi: 10.3321/j.issn:1006-687X.2002.04.013
|
[23] |
施国新, 杜开和, 解凯彬, 等. 汞、镉污染对黑藻叶细胞伤害的超微结构研究 [J]. 植物学报, 2000, 42(4): 373-378.
SHI G X, DU K H, XIE K B, et al. Ultrastructural study of leaf cells damaged from Hg2+ and Cd2+ pollution in Hydrilla verticillata [J]. Acta Botanica Sinica, 2000, 42(4): 373-378(in Chinese).
|
[24] |
POULTER A, COLLIN H A, THURMAN D A, et al. The role of the cell wall in the mechanism of lead and zinc tolerance in Anthoxanthum odoratum L [J]. Plant Science, 1985, 42(1): 61-66. doi: 10.1016/0168-9452(85)90029-9
|
[25] |
徐勤松, 施国新, 杜开和. 重金属镉、锌在菹草叶细胞中的超微定位观察 [J]. 云南植物研究, 2002, 24(2): 241-244. doi: 10.3969/j.issn.2095-0845.2002.02.012
XU Q S, SHI G X, DU K H. Ultrastructual localization observation of Cd and Zn in leaf cells of Potamogeton crispus [J]. Acta Botanica Yunnanica, 2002, 24(2): 241-244(in Chinese). doi: 10.3969/j.issn.2095-0845.2002.02.012
|
[26] |
范春辉, 高雅琳, 杜波. 黄土区金盏菊幼苗根部细胞壁对Pb/Cd复合胁迫响应的FTIR和Raman光谱 [J]. 光谱学与光谱分析, 2016, 36(7): 2076-2081.
FAN C H, GAO Y L, DU B. Response of FTIR and Raman spectra on cell wall of calendula of ficinalis seedlings roots to the co-contamination stress of lead and cadmium in loess [J]. Spectroscopy and Spectral Analysis, 2016, 36(7): 2076-2081(in Chinese).
|
[27] |
杨顶田, 施国新, 陈伟民. Cr6+污染对水鳖的超微结构及菱、莼菜、黑藻细胞膜的影响 [J]. 武汉植物学研究, 2001, 19(6): 483-488,537.
YANG D T, SHI G X, CHEN W M. The effects of Cr6+'s pollution on the ultrastructure of Hydrocharis dubia and cell membrane of H. verticillata, Brasenia schreberi, Trapa bispinosa [J]. Journal of Wuhan Botanical Research, 2001, 19(6): 483-488,537(in Chinese).
|
[28] |
杨世勇, 王方, 谢建春. 重金属对植物的毒害及植物的耐性机制 [J]. 安徽师范大学学报(自然科学版), 2004, 27(1): 71-74,90.
YANG S Y, WANG F, XIE J C. Plant toxicity of heavy metals and the tolerant mechanisms of plants [J]. Journal of Anhui Normal University (Natural Science), 2004, 27(1): 71-74,90(in Chinese).
|
[29] |
李元, 王焕校, 吴玉树. Cd、Fe及其复合污染对烟草叶片几项生理指标的影响 [J]. 生态学报, 1992, 12(2): 147-154. doi: 10.3321/j.issn:1000-0933.1992.02.001
LI Y, WANG H X, WU Y S. Effects of cadmium and iron on the some physiological indicators in leaves of tobacco [J]. Acta Ecologica Sinica, 1992, 12(2): 147-154(in Chinese). doi: 10.3321/j.issn:1000-0933.1992.02.001
|
[30] |
SHAHID M, POURRUT B, DUMAT C, et al. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants [J]. Reviews of Environmental Contamination and Toxicology, 2014, 232: 1-44. doi: 10.1007/978-3-319-06746-9_1
|
[31] |
SKÓRZYŃSKA-POLIT E, PAWLIKOWSKA-PAWLĘGA B, SZCZUKA E, et al. The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses [J]. Plant Growth Regulation, 2006, 48(1): 29-39. doi: 10.1007/s10725-005-4745-6
|
[32] |
MISHRA S, SRIVASTAVA S, TRIPATHI R D, et al. Lead detoxification by coontail (Ceratophyllum demersum L. ) involves induction of phytochelatins and antioxidant system in response to its accumulation [J]. Chemosphere, 2006, 65(6): 1027-1039. doi: 10.1016/j.chemosphere.2006.03.033
|
[33] |
SINGH R, TRIPATHI R D, DWIVEDI S, et al. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system [J]. Bioresource Technology, 2010, 101(9): 3025-3032. doi: 10.1016/j.biortech.2009.12.031
|
[34] |
HOSSAIN M A, PIYATIDA P, da SILVA J A T, et al. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation [J]. Journal of Botany, 2012, 2012: 1-37.
|
[35] |
VOLLENWEIDER P, MENARD T, GÜNTHARDT-GOERG M S. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level [J]. Environmental Pollution, 2011, 159(1): 324-336. doi: 10.1016/j.envpol.2010.07.013
|
[36] |
ZHOU Q, GU Y L, YUE X, et al. Combined toxicity and underlying mechanisms of a mixture of eight heavy metals [J]. Molecular Medicine Reports, 2017, 15(2): 859-866. doi: 10.3892/mmr.2016.6089
|
[37] |
AN Q R, HE X L, ZHENG N, et al. Physiological and genetic effects of cadmium and copper mixtures on carrot under greenhouse cultivation [J]. Ecotoxicology and Environmental Safety, 2020, 206: 111363. doi: 10.1016/j.ecoenv.2020.111363
|
[38] |
GUPTA M, SARIN N B. Heavy metal induced DNA changes in aquatic macrophytes: Random amplified polymorphic DNA analysis and identification of sequence characterized amplified region marker [J]. Journal of Environmental Sciences, 2009, 21(5): 686-690. doi: 10.1016/S1001-0742(08)62324-4
|
[39] |
葛才林, 杨小勇, 孙锦荷, 等. 重金属胁迫引起的水稻和小麦幼苗DNA损伤 [J]. 植物生理与分子生物学学报, 2002, 28(6): 419-424.
GE C L, YANG X Y, SUN J H, et al. DNA damage caused by heavy metal stress in rice and wheat seedlings [J]. Acta Photophysiologica Sinica, 2002, 28(6): 419-424(in Chinese).
|
[40] |
吕朝晖, 王焕校. 镉铅对小麦醇脱氢酶(ADH)基因表达影响的初步研究 [J]. 环境科学学报, 1998, 18(5): 500-503. doi: 10.3321/j.issn:0253-2468.1998.05.010
LV Z H, WANG H X. Effects of cadmium and lead on adh gene experssion [J]. Acta Scientiae Circumstantiae, 1998, 18(5): 500-503(in Chinese). doi: 10.3321/j.issn:0253-2468.1998.05.010
|
[41] |
ZHANG Y X, CHAI T Y, DONG J, et al. Cloning and expression analysis of the heavy-metal responsive gene PvSR2 from bean [J]. Plant Science, 2001, 161(4): 783-790. doi: 10.1016/S0168-9452(01)00470-8
|
[42] |
NGUYEN VAN T. Assessment of combined toxic and genotoxic effects of soil metal pollutants: A laboratory and a field experiment using the test plant trifolium repens [D]. University of Milano-Bicocca, 2015.
|
[43] |
LANIER C, BERNARD F, DUMEZ S, et al. Combined toxic effects and DNA damage to two plant species exposed to binary metal mixtures (Cd/Pb) [J]. Ecotoxicology and Environmental Safety, 2019, 167: 278-287. doi: 10.1016/j.ecoenv.2018.10.010
|
[44] |
LU C L, SVOBODA K R, LENZ K A, et al. Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans [J]. Environmental Science and Pollution Research, 2018, 25(16): 15378-15389. doi: 10.1007/s11356-018-1752-5
|
[45] |
COOPER N L, BIDWELL J R, KUMAR A. Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata [J]. Ecotoxicology and Environmental Safety, 2009, 72(5): 1523-1528. doi: 10.1016/j.ecoenv.2009.03.002
|
[46] |
VIJVER M G, ELLIOTT E G, PEIJNENBURG W J G M, et al. Response predictions for organisms water-exposed to metal mixtures: A meta-analysis [J]. Environmental Toxicology and Chemistry, 2011, 30(6): 1482-1487. doi: 10.1002/etc.499
|
[47] |
LUO W, VERWEIJ R A, van GESTEL C A M. Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods [J]. Environmental Pollution, 2014, 185: 1-9. doi: 10.1016/j.envpol.2013.10.017
|
[48] |
WU X Y, COBBINA S J, MAO G H, et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment [J]. Environmental Science and Pollution Research, 2016, 23(9): 8244-8259. doi: 10.1007/s11356-016-6333-x
|
[49] |
EUM K D, WEISSKOPF M G, NIE L H, et al. Cumulative lead exposure and age at menopause in the Nurses' Health Study cohort [J]. Environmental Health Perspectives, 2014, 122(3): 229-234. doi: 10.1289/ehp.1206399
|
[50] |
ADAMS S V, QURAISHI S M, SHAFER M M, et al. Dietary cadmium exposure and risk of breast, endometrial, and ovarian cancer in the Women's Health Initiative [J]. Environmental Health Perspectives, 2014, 122(6): 594-600. doi: 10.1289/ehp.1307054
|
[51] |
BLOOM M S, PARSONS P J, STEUERWALD A J, et al. Toxic trace metals and human oocytes during in vitro fertilization (IVF) [J]. Reproductive Toxicology, 2010, 29(3): 298-305. doi: 10.1016/j.reprotox.2010.01.003
|
[52] |
JEZIERSKA B, ŁUGOWSKA K, WITESKA M. The effects of heavy metals on embryonic development of fish (a review) [J]. Fish Physiology and Biochemistry, 2009, 35(4): 625-640. doi: 10.1007/s10695-008-9284-4
|
[53] |
WITESKA M, SARNOWSKI P, ŁUGOWSKA K, et al. The effects of cadmium and copper on embryonic and larval development of ide Leuciscus idus L [J]. Fish Physiology and Biochemistry, 2014, 40(1): 151-163. doi: 10.1007/s10695-013-9832-4
|
[54] |
黄涛, 求瑞娟, 兰宗宝, 等. 稀土尾矿库渗漏水污染对花背蟾蜍胚后发育的毒性作用 [J]. 南方农业学报, 2019, 50(2): 412-417. doi: 10.3969/j.issn.2095-1191.2019.02.28
HUANG T, QIU R J, LAN Z B, et al. The toxic effects of leakage water from rare earth tailings reservoir on the postembryonic development of Strauchbufo raddei [J]. Journal of Southern Agriculture, 2019, 50(2): 412-417(in Chinese). doi: 10.3969/j.issn.2095-1191.2019.02.28
|
[55] |
贾秀英, 董爱华, 马小梅. 镉致蟾蜍肝、肾脂质过氧化损伤 [J]. 应用与环境生物学报, 2004, 10(1): 92-94. doi: 10.3321/j.issn:1006-687X.2004.01.021
JIA X Y, DONG A H, MA X M. Effect of Cd2+ on lipid peroxidation in liver and kidney of Bufo gargarizans [J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(1): 92-94(in Chinese). doi: 10.3321/j.issn:1006-687X.2004.01.021
|
[56] |
van OOIK T, PAUSIO S, RANTALA M J. Direct effects of heavy metal pollution on the immune function of a geometrid moth, Epirrita autumnata [J]. Chemosphere, 2008, 71(10): 1840-1844. doi: 10.1016/j.chemosphere.2008.02.014
|
[57] |
BISER J A, VOGEL L A, BERGER J, et al. Effects of heavy metals on immunocompetence of white-footed mice (Peromyscus leucopus) [J]. Journal of Wildlife Diseases, 2004, 40(2): 173-184. doi: 10.7589/0090-3558-40.2.173
|
[58] |
SORVARI J, RANTALA L M, RANTALA M J, et al. Heavy metal pollution disturbs immune response in wild ant populations [J]. Environmental Pollution, 2007, 145(1): 324-328. doi: 10.1016/j.envpol.2006.03.004
|
[59] |
CHATELAIN M, GASPARINI J, FRANTZ A. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia) [J]. Ecotoxicology, 2016, 25(3): 521-529. doi: 10.1007/s10646-016-1610-5
|
[60] |
BAHADAR H, ABDOLLAHI M, MAQBOOL F, et al. Mechanistic overview of immune modulatory effects of environmental toxicants [J]. Inflammation & Allergy-Drug Targets, 2015, 13(6): 382-386.
|
[61] |
LUTZ W, WASOWICZ W. Metal-induced modulation of redox cell-signaling in the immune system [J]. Comments on Toxicology, 2003, 9(1): 59-83. doi: 10.1080/08865140302422
|
[62] |
DONG J S, LI J J, CUI L Y, et al. Cortisol modulates inflammatory responses in LPS-stimulated RAW264.7 cells via the NF-κB and MAPK pathways [J]. BMC Veterinary Research, 2018, 14(1): 30. doi: 10.1186/s12917-018-1360-0
|
[63] |
JADHAV S H, SARKAR S N, RAM G C, et al. Immunosuppressive effect of subchronic exposure to a mixture of eight heavy metals, found as groundwater contaminants in different areas of India, through drinking water in male rats [J]. Archives of Environmental Contamination and Toxicology, 2007, 53(3): 450-458. doi: 10.1007/s00244-006-0177-1
|
[64] |
江红霞, 凌洁彬, 叶凯甲, 等. 铜和镉对草鱼肾脏中3种白细胞介素基因表达的影响 [J]. 水产科学, 2019, 38(2): 220-225.
JIANG H X, LING J B, YE K J, et al. Effects of copper and cadmium on expression of three interleukin genes in kidney of grass carp Ctenopharyngodon idellus [J]. Fisheries Science, 2019, 38(2): 220-225(in Chinese).
|
[65] |
MORCILLO P, CORDERO H, MESEGUER J, et al. In vitro immunotoxicological effects of heavy metals on European sea bass (Dicentrarchus labrax L. ) head-kidney leucocytes [J]. Fish & Shellfish Immunology, 2015, 47(1): 245-254.
|
[66] |
白晓娟. 树麻雀免疫系统对环境重金属污染响应的研究[D]. 兰州: 兰州大学, 2019.
BAI X J. Study on the response of immune system in tree sparrow to environmental heavy metals pollution[D]. Lanzhou: Lanzhou University, 2019(in Chinese).
|
[67] |
GERHARDSSON L, ENGLYST V, LUNDSTRÖM N G, et al. Cadmium, copper and zinc in tissues of deceased copper smelter workers [J]. Journal of Trace Elements in Medicine and Biology, 2002, 16(4): 261-266. doi: 10.1016/S0946-672X(02)80055-4
|
[68] |
SOLGI E, MIRMOHAMMADVALI S. Comparison of the heavy metals, copper, iron, magnesium, nickel, and zinc between muscle and gills of four benthic fish species from shif island (Iran) [J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(4): 658-664. doi: 10.1007/s00128-021-03155-1
|
[69] |
MORCILLO P, CORDERO H, MESEGUER J, et al. Toxicological in vitro effects of heavy metals on gilthead seabream (Sparus aurata L. ) head-kidney leucocytes [J]. Toxicology in Vitro, 2015, 30(1): 412-420. doi: 10.1016/j.tiv.2015.09.021
|
[70] |
HANDY R D. Chronic effects of copper exposure versus endocrine toxicity: Two sides of the same toxicological process? [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2003, 135(1): 25-38.
|
[71] |
顾成武. 铅镉联合对发育期大鼠中枢神经系统二价金属转运蛋白DMT1基因表达的影响[D]. 汕头: 汕头大学, 2008.
GU C W. Combined effect of lead and cadmium on DMT1 expression in central nervous system of budding rat[D]. Shantou, China: Shantou University, 2008(in Chinese).
|
[72] |
KARRI V, SCHUHMACHER M, KUMAR V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain [J]. Environmental Toxicology and Pharmacology, 2016, 48: 203-213. doi: 10.1016/j.etap.2016.09.016
|
[73] |
REGLERO M M, TAGGART M A, CASTELLANOS P, et al. Reduced sperm quality in relation to oxidative stress in red deer from a lead mining area [J]. Environmental Pollution, 2009, 157(8/9): 2209-2215.
|
[74] |
ADEMUYIWA O, AGARWAL R, CHANDRA R, et al. Effects of sub-chronic low-level lead exposure on the homeostasis of copper and zinc in rat tissues [J]. Journal of Trace Elements in Medicine and Biology, 2010, 24(3): 207-211. doi: 10.1016/j.jtemb.2010.01.002
|
[75] |
JANKOVSKÁ I, MIHOLOVÁ D, LANGROVÁ I, et al. Influence of parasitism on the use of small terrestrial rodents in environmental pollution monitoring [J]. Environmental Pollution, 2009, 157(8/9): 2584-2586.
|
[76] |
COBBINA S J, CHEN Y, ZHOU Z X, et al. Low concentration toxic metal mixture interactions: Effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure [J]. Chemosphere, 2015, 132: 79-86. doi: 10.1016/j.chemosphere.2015.03.013
|
[77] |
RAI N K, ASHOK A, RAI A, et al. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and Retina [J]. Toxicology and Applied Pharmacology, 2013, 273(2): 242-258. doi: 10.1016/j.taap.2013.05.003
|
[78] |
BOELSTERLI U A. Mechanistic toxicology: The molecular basis of how chemicals disrupt biological targets[M]. New York:Toxicology,2003
|
[79] |
VERMA R, XU X F, JAISWAL M K, et al. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components [J]. Toxicology and Applied Pharmacology, 2011, 253(3): 178-187. doi: 10.1016/j.taap.2011.04.002
|
[80] |
LOU J L, JIN L Z, WU N X, et al. DNA damage and oxidative stress in human B lymphoblastoid cells after combined exposure to hexavalent chromium and nickel compounds [J]. Food and Chemical Toxicology, 2013, 55: 533-540. doi: 10.1016/j.fct.2013.01.053
|
[81] |
DORNE J L C M, RAGAS A M J, FRAMPTON G K, et al. Trends in human risk assessment of pharmaceuticals [J]. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1167-1172. doi: 10.1007/s00216-006-0961-9
|
[82] |
XUE S G, SHI L Z, WU C, et al. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines [J]. Environmental Research, 2017, 156: 23-30. doi: 10.1016/j.envres.2017.03.014
|
[83] |
WU B, LIU Z T, XU Y, et al. Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta) [J]. Ecotoxicology and Environmental Safety, 2012, 81: 122-126. doi: 10.1016/j.ecoenv.2012.05.003
|
[84] |
VELLINGER C, GISMONDI E, FELTEN V, et al. Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): Understanding the links between physiological and behavioural responses [J]. Aquatic Toxicology, 2013, 140/141: 106-116. doi: 10.1016/j.aquatox.2013.05.010
|
[85] |
CHOI Y, PARK K, KIM I, et al. Combined toxic effect of airborne heavy metals on human lung cell line A549 [J]. Environmental Geochemistry and Health, 2018, 40(1): 271-282. doi: 10.1007/s10653-016-9901-6
|
[86] |
HAMBACH R, LISON D, D’HAESE P C, et al. Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers [J]. Toxicology Letters, 2013, 222(2): 233-238. doi: 10.1016/j.toxlet.2013.06.218
|
[87] |
YANG D F, LIU Y L, LIU S, et al. Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China [J]. Chemosphere, 2020, 250: 126289. doi: 10.1016/j.chemosphere.2020.126289
|
[88] |
张迎梅, 王叶菁, 虞闰六, 等. 重金属Cd2+、Pb2+和Zn2+对泥鳅DNA损伤的研究 [J]. 水生生物学报, 2006, 30(4): 399-403. doi: 10.3321/j.issn:1000-3207.2006.04.005
ZHANG Y M, WANG Y J, YU R L, et al. Effects of heavy metals Cd2+, Pb2+ and Zn2+ on DNA damage of loach Misgurnus anguillicandatus [J]. Acta Hydrobiologica Sinica, 2006, 30(4): 399-403(in Chinese). doi: 10.3321/j.issn:1000-3207.2006.04.005
|
[89] |
SARKAR A. Biomarkers of marine pollution and bioremediation [J]. Ecotoxicology, 2006, 15(4): 331-332. doi: 10.1007/s10646-006-0073-5
|
[90] |
VIDALI M. Bioremediation. An overview [J]. Pure and Applied Chemistry, 2001, 73(7): 1163-1172. doi: 10.1351/pac200173071163
|
[91] |
MARTÍNEZ-PACHECO M, HIDALGO-MIRANDA A, ROMERO-CÓRDOBA S, et al. mRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects [J]. Gene, 2014, 533(2): 508-514. doi: 10.1016/j.gene.2013.09.049
|
[92] |
吴晓亭, 王晓昌, 马晓妍. 固定毒性配比法研究重金属与土霉素的联合毒性 [J]. 环境工程学报, 2017, 11(1): 626-631. doi: 10.12030/j.cjee.201508115
WU X T, WANG X C, MA X Y. Joint toxicities of binary mixtures between heavy metals and OTC based on predefined TU ratios [J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 626-631(in Chinese). doi: 10.12030/j.cjee.201508115
|
[93] |
GE H L, LIU S S, SU B X, et al. Predicting synergistic toxicity of heavy metals and ionic liquids on Photobacterium Q67 [J]. Journal of Hazardous Materials, 2014, 268: 77-83. doi: 10.1016/j.jhazmat.2014.01.006
|
[94] |
BAAS J, van HOUTE B P P, van GESTEL C A M, et al. Modeling the effects of binary mixtures on survival in time [J]. Environmental Toxicology and Chemistry, 2007, 26(6): 1320-1327. doi: 10.1897/06-437R.1
|
[95] |
LOEWE S, MUISCHNEK H. Effect of combinations: Mathematical basis of problem[J]. Arch Exp Pathol Pharmakol,1926
|
[96] |
SPURGEON D J, JONES O A H, DORNE J L C M, et al. Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures [J]. Science of the Total Environment, 2010, 408(18): 3725-3734. doi: 10.1016/j.scitotenv.2010.02.038
|
[97] |
BACKHAUS T, SCHOLZE M, GRIMME L H. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri [J]. Aquatic Toxicology, 2000, 49(1/2): 49-61.
|
[98] |
JUNGHANS M, BACKHAUS T, FAUST M, et al. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction [J]. Pest Management Science, 2003, 59(10): 1101-1110. doi: 10.1002/ps.735
|
[99] |
FAUST M, ALTENBURGER R, BACKHAUS T, et al. Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action [J]. Aquatic Toxicology, 2003, 63(1): 43-63. doi: 10.1016/S0166-445X(02)00133-9
|
[100] |
WALTER H, CONSOLARO F, GRAMATICA P, et al. Mixture toxicity of priority pollutants at no observed effect concentrations (NOECs) [J]. Ecotoxicology, 2002, 11(5): 299-310. doi: 10.1023/A:1020592802989
|
[101] |
DRESCHER K, BOEDEKER W. Assessment of the combined effects of substances: The relationship between concentration addition and independent action [J]. Biometrics, 1995, 51(2): 716. doi: 10.2307/2532957
|
[102] |
BACKHAUS T, FAUST M, SCHOLZE M, et al. Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action [J]. Environmental Toxicology and Chemistry, 2004, 23(2): 258-264. doi: 10.1897/02-497
|
[103] |
陈朗, 姜辉, 贾俊超, 等. 农药混配制剂环境风险评估现状与展望 [J]. 生态毒理学报, 2017, 12(4): 15-24. doi: 10.7524/AJE.1673-5897.20170527003
CHEN L, JIANG H, JIA J C, et al. Environmental risk assessment for mixed pesticide products: Current situation and prospects [J]. Asian Journal of Ecotoxicology, 2017, 12(4): 15-24(in Chinese). doi: 10.7524/AJE.1673-5897.20170527003
|
[104] |
PUCKOWSKI A, STOLTE S, WAGIL M, et al. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna [J]. International Journal of Hygiene and Environmental Health, 2017, 220(3): 575-582. doi: 10.1016/j.ijheh.2017.01.011
|
[105] |
GAO Y F, FENG J F, KANG L L, et al. Concentration addition and independent action model: Which is better in predicting the toxicity for metal mixtures on zebrafish larvae [J]. Science of the Total Environment, 2018, 610/611: 442-450. doi: 10.1016/j.scitotenv.2017.08.058
|
[106] |
YOO J W, CHO H, LEE K W, et al. Combined effects of heavy metals (Cd, As, and Pb): Comparative study using conceptual models and the antioxidant responses in the brackish water flea [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2021, 239: 108863.
|
[107] |
BACKHAUS T, FAUST M. Predictive environmental risk assessment of chemical mixtures: A conceptual framework [J]. Environmental Science & Technology, 2012, 46(5): 2564-2573.
|
[108] |
NYS C, VERSIEREN L, CORDERY K I, et al. Systematic evaluation of chronic metal-mixture toxicity to three species and implications for risk assessment [J]. Environmental Science & Technology, 2017, 51(8): 4615-4623.
|
[109] |
THRUPP T J, RUNNALLS T J, SCHOLZE M, et al. The consequences of exposure to mixtures of chemicals: Something from ‘nothing’ and ‘a lot from a little’ when fish are exposed to steroid hormones [J]. Science of the Total Environment, 2018, 619/620: 1482-1492. doi: 10.1016/j.scitotenv.2017.11.081
|
[110] |
ZHU B, WU Z F, LI J, et al. Single and joint action toxicity of heavy metals on early developmental stages of Chinese rare minnow (Gobiocypris rarus) [J]. Ecotoxicology and Environmental Safety, 2011, 74(8): 2193-2202. doi: 10.1016/j.ecoenv.2011.07.033
|
[111] |
HUANG W Y, LIU F, LIU S S, et al. Predicting mixture toxicity of seven phenolic compounds with similar and dissimilar action mechanisms to Vibrio qinghaiensis sp. nov. Q67 [J]. Ecotoxicology and Environmental Safety, 2011, 74(6): 1600-1606. doi: 10.1016/j.ecoenv.2011.01.007
|
[112] |
ZENG J J, CHEN F, LI M, et al. The mixture toxicity of heavy metals on Photobacterium phosphoreum and its modeling by ion characteristics-based QSAR [J]. PLoS One, 2019, 14(12): e0226541. doi: 10.1371/journal.pone.0226541
|
[113] |
XIE M D, SUN Y X, FENG J F, et al. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model [J]. Aquatic Toxicology, 2019, 210: 106-116. doi: 10.1016/j.aquatox.2019.02.018
|
[114] |
FONSECA G, GALLUCCI F. The need of hypothesis-driven designs and conceptual models in impact assessment studies: An example from the free-living marine Nematodes [J]. Ecological Indicators, 2016, 71: 79-86. doi: 10.1016/j.ecolind.2016.06.051
|
[115] |
DI TORO D M, ALLEN H E, BERGMAN H L, et al. Biotic ligand model of the acute toxicity of metals. 1. Technical Basis [J]. Environmental Toxicology and Chemistry, 2001, 20(10): 2383-2396. doi: 10.1002/etc.5620201034
|
[116] |
MARTINS R J E, BOAVENTURA R A R. Uptake and release of zinc by aquatic bryophytes (Fontinalis antipyretica L. ex. Hedw.) [J]. Water Research, 2002, 36(20): 5005-5012. doi: 10.1016/S0043-1354(02)00233-6
|
[117] |
CHEN B C, WANG P J, HO P C, et al. Nonlinear biotic ligand model for assessing alleviation effects of Ca, Mg, and K on Cd toxicity to soybean roots [J]. Ecotoxicology, 2017, 26(7): 942-955. doi: 10.1007/s10646-017-1823-2
|