-
重金属污染的形式在自然界之中是繁杂多样的. 大量文献研究了单一重金属元素造成的污染现象,但实际上重金属污染往往是以多种重金属复合的形式出现. 伴生性和综合性[1]是重金属复合污染的显著特征. 在重金属复合污染中,多种金属迁移转化遗存效应的影响要比单一的重金属污染多且复杂.重金属复合污染中元素或化合物之间的交互作用显著影响着重金属污染物的生物效应(吸收、积累和毒性),因此研究重金属复合污染下生物毒性效应,能够对重金属生态环境风险具有更客观的反映.拮抗效应、加和效应与协同效应是不同种类的重金属反应机制、转化机制的一般表现[2-3]. 在拮抗作用中,竞争位点在某种程度上可视为复合污染拮抗作用的直接形成原因.协同作用是指多种污染物共存所产生的毒性效应大于各污染物单独作用的毒性效应之和,即某污染物的毒性被其他污染物所加强[2]. 加和作用是指多种污染物共存时所产生的毒性效应等于各污染物单独作用的毒性效应之和[4]. 重金属复合污染对生物带来的毒性复杂性逐渐为大家所重视,随着研究和分析的技术不断发展与完善,重金属复合污染对生物的影响获得了一定的突破.
重金属复合污染对生物影响的研究进展
Research progress on the effects of heavy metal compound pollution on organisms
-
摘要: 一直以来,重金属污染都是国内外学者关注的问题. 相比于单一重金属污染,多种重金属并存的复合污染更加普遍. 重金属复合污染具有普遍性、复杂性等特点,它通过加和作用、拮抗作用和协同作用对生态环境产生更多不确定的影响. 本文就重金属复合污染对植物、动物生长的致毒机理做出总结,并归类了重金属复合污染毒性预测模型. 综述了国内外重金属复合污染研究最新进展,从环境科学、环境毒理学、分子生物学等角度出发探讨相关机理,并指出复合污染研究中存在的若干问题和发展方向.Abstract: Heavy metal pollution has always been a concern of scholars at home and abroad. Compared with single heavy metal pollution, multiple heavy metal co-existing compound pollution is more common. Heavy metal combined pollution has the characteristics of universality and complexity, and it has more uncertain effects on the ecological environment through additive, antagonistic and synergistic effects.This article summarizes the toxic mechanism of heavy metal compound pollution to the growth of plants and animals, and classifies the heavy metal compound pollution toxicity prediction model. This review summarizes the latest progress in the study of heavy metal compound pollution at home and abroad, discusses related mechanisms from the perspectives of environmental science, environmental toxicology, and molecular biology, and points out several problems and development directions in the study of compound pollution.
-
Key words:
- heavy metals /
- compound pollution /
- toxic mechanism /
- prediction model
-
[1] 周东美, 王慎强, 陈怀满. 土壤中有机污染物-重金属复合污染的交互作用 [J]. 土壤与环境, 2000, 9(2): 143-145. ZHOU D M, WANG S Q, CHEN H M. Interaction of organic pollutants and heavy metal in soil [J]. Soil and Environmental Sciences, 2000, 9(2): 143-145(in Chinese).
[2] 王恒. 土壤重金属复合污染研究进展 [J]. 科技创新导报, 2016, 13(28): 71-72. WANG H. Research progress of soil heavy metal compound pollution [J]. Science and Technology Innovation Herald, 2016, 13(28): 71-72(in Chinese).
[3] 郑振华, 周培疆, 吴振斌. 复合污染研究的新进展 [J]. 应用生态学报, 2001, 12(3): 469-473. doi: 10.3321/j.issn:1001-9332.2001.03.037 ZHENG Z H, ZHOU P J, WU Z B. New advances in research of combined pollution [J]. Chinese Journal of Applied Ecology, 2001, 12(3): 469-473(in Chinese). doi: 10.3321/j.issn:1001-9332.2001.03.037
[4] 窦晶晶. Cd、Cr单一及复合污染对赤子爱胜蚓的毒理研究[D]. 杨凌: 西北农林科技大学, 2015. DOU J J. Individual and combined toxicity of cadmium and chromium on the earthworm Eisenia fetida[D]. Yangling, China: Northwest A & F University, 2015(in Chinese).
[5] JONES D L, DARAH P R, KOCHIAN L V. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake [J]. Plant and Soil, 1996, 180(1): 57-66. doi: 10.1007/BF00015411 [6] 秦月华, 宋锡全. 有机重金属复合污染对香樟吸收营养离子的影响 [J]. 贵州师范大学学报(自然科学版), 2010, 28(1): 9-13. QIN Y H, SONG X Q. Effects of organic pollutant and heavy metal complex pollution on nutrient ions absorption of Cinnamomum camphora [J]. Journal of Guizhou Normal University (Natural Sciences), 2010, 28(1): 9-13(in Chinese).
[7] LIU X L, ZHANG S Z, SHAN X Q, et al. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination [J]. Ecotoxicology and Environmental Safety, 2007, 68(2): 305-313. doi: 10.1016/j.ecoenv.2006.11.001 [8] 王新, 梁仁禄, 周启星. Cd-Pb复合污染在土壤-水稻系统中生态效应的研究 [J]. 农村生态环境, 2001, 17(2): 41-44. WANG X, LIANG R L, ZHOU Q X. Ecological effect of Cd Pb combined pollution on soil-rice system [J]. Rural Eco-Environment, 2001, 17(2): 41-44(in Chinese).
[9] GUO T R, ZHANG G P, ZHANG Y H. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium [J]. Colloids and Surfaces. B, Biointerfaces, 2007, 57(2): 182-188. doi: 10.1016/j.colsurfb.2007.01.013 [10] CAI Y M, XU W B, WANG M E, et al. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake [J]. Environmental Pollution, 2019, 253: 959-965. doi: 10.1016/j.envpol.2019.07.077 [11] 梁瑞, 陈慧茹, 刘斌美, 等. 重金属复合污染对水稻镉吸收积累的影响 [J]. 生物学杂志, 2019, 36(03): 42-46. doi: 10.3969/j.issn.2095-1736.2019.03.042 LIANG R, CHEN H R, LIU B M, et al. Effect of heavy metal compound pollution on Cd uptake and accumulation in rice [J]. JOURNAL OF BIOLOGY, 2019, 36(03): 42-46(in Chinese). doi: 10.3969/j.issn.2095-1736.2019.03.042
[12] 宇克莉, 孟庆敏, 邹金华. 镉对玉米幼苗生长、叶绿素含量及细胞超微结构的影响 [J]. 华北农学报, 2010, 25(3): 118-123. doi: 10.7668/hbnxb.2010.03.026 YU K L, MENG Q M, ZOU J H. Effects of Cd2+ on seedling growth, chlorophyll contents and ultrastructures in maize [J]. Acta Agriculturae Boreali-Sinica, 2010, 25(3): 118-123(in Chinese). doi: 10.7668/hbnxb.2010.03.026
[13] 张嘉桐, 关颖慧, 司莉青, 等. Pb2+、Cd2+复合胁迫对桑树光合作用的影响 [J]. 北京林业大学学报, 2018, 40(4): 16-23. ZHANG J T, GUAN Y H, SI L Q, et al. Effects of Pb2+and Cd2+combined stress on photosynthesis of Morus alba [J]. Journal of Beijing for Estry University, 2018, 40(4): 16-23(in Chinese).
[14] 孟庆俊, 袁训珂, 冯启言, 等. 重金属复合污染对小麦幼苗生长的毒性效应 [J]. 安徽农业科学, 2008, 36(1): 122-124. doi: 10.3969/j.issn.0517-6611.2008.01.035 MENG Q J, YUAN X K, FENG Q Y, et al. Toxic effects of compound pollution with heavy metals on the growth of wheat seedlings [J]. Journal of Anhui Agricultural Sciences, 2008, 36(1): 122-124(in Chinese). doi: 10.3969/j.issn.0517-6611.2008.01.035
[15] 铁柏清, 孙健, 钱湛, 等. 重金属复合污染对灯心草的生态毒性效应及重金属积累特性的影响 [J]. 农业环境科学学报, 2006, 25(3): 629-636. doi: 10.3321/j.issn:1672-2043.2006.03.018 TIE B Q, SUN J, QIAN Z, et al. The eco-toxicological effect of Cu, cd, pb, Zn and as compound pollution on Juncus effuses and its accumulation character of heavy metals [J]. Journal of Agro-Environment Science, 2006, 25(3): 629-636(in Chinese). doi: 10.3321/j.issn:1672-2043.2006.03.018
[16] SHAKYA K, CHETTRI M K, SAWIDIS T. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses [J]. Archives of Environmental Contamination and Toxicology, 2008, 54(3): 412-421. doi: 10.1007/s00244-007-9060-y [17] MARIA G, CLAUDIO A S, RODRIGO A C, et al. Cadmium and/or copper excess induce interdependent metal accumulation, DNA methylation, induction of metal chelators and antioxidant defences in the seagrass Zostera marina [J]. Chemosphere, 2019, 224: 111-119. doi: 10.1016/j.chemosphere.2019.02.123 [18] SANTOS R W, SCHMIDT É C, BOUZON Z L. Changes in ultrastructure and cytochemistry of the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales) treated with cadmium [J]. Protoplasma, 2013, 250(1): 297-305. doi: 10.1007/s00709-012-0412-8 [19] LÖSCH R. Plant mitochondrial respiration under the influence of heavy metals[M]//Heavy Metal Stress in Plants. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 182-200. [20] 刘登义, 王友保. Cu、As对作物种子萌发和幼苗生长影响的研究 [J]. 应用生态学报, 2002, 13(2): 179-182. doi: 10.3321/j.issn:1001-9332.2002.02.013 LIU D Y, WANG Y B. Effects of Cu and As on germination and seedling growth of crops [J]. Chinese Journal of Applied Ecology, 2002, 13(2): 179-182(in Chinese). doi: 10.3321/j.issn:1001-9332.2002.02.013
[21] 谷巍, 施国新, 韩承辉, 等. 汞、镉污染对轮叶狐尾藻的毒害 [J]. 中国环境科学, 2001, 21(4): 371-375. doi: 10.3321/j.issn:1000-6923.2001.04.021 GU W, SHI G X, HAN C H, et al. The toxicity damage effect of Hg2+ and Cd2+ pollution on Myriophyllum verticillatum Linn [J]. China Environmental Science, 2001, 21(4): 371-375(in Chinese). doi: 10.3321/j.issn:1000-6923.2001.04.021
[22] 李坤, 李琳, 侯和胜, 等. Cu2+、Cd2+、Zn2+对两种单胞藻的毒害作用 [J]. 应用与环境生物学报, 2002, 8(4): 395-398. doi: 10.3321/j.issn:1006-687X.2002.04.013 LI K, LI L, HOU H S, et al. Study on toxicity of heavy metal ions to two species of marine unicellular algae [J]. Chinese Journal of Applied and Environmental Biology, 2002, 8(4): 395-398(in Chinese). doi: 10.3321/j.issn:1006-687X.2002.04.013
[23] 施国新, 杜开和, 解凯彬, 等. 汞、镉污染对黑藻叶细胞伤害的超微结构研究 [J]. 植物学报, 2000, 42(4): 373-378. SHI G X, DU K H, XIE K B, et al. Ultrastructural study of leaf cells damaged from Hg2+ and Cd2+ pollution in Hydrilla verticillata [J]. Acta Botanica Sinica, 2000, 42(4): 373-378(in Chinese).
[24] POULTER A, COLLIN H A, THURMAN D A, et al. The role of the cell wall in the mechanism of lead and zinc tolerance in Anthoxanthum odoratum L [J]. Plant Science, 1985, 42(1): 61-66. doi: 10.1016/0168-9452(85)90029-9 [25] 徐勤松, 施国新, 杜开和. 重金属镉、锌在菹草叶细胞中的超微定位观察 [J]. 云南植物研究, 2002, 24(2): 241-244. doi: 10.3969/j.issn.2095-0845.2002.02.012 XU Q S, SHI G X, DU K H. Ultrastructual localization observation of Cd and Zn in leaf cells of Potamogeton crispus [J]. Acta Botanica Yunnanica, 2002, 24(2): 241-244(in Chinese). doi: 10.3969/j.issn.2095-0845.2002.02.012
[26] 范春辉, 高雅琳, 杜波. 黄土区金盏菊幼苗根部细胞壁对Pb/Cd复合胁迫响应的FTIR和Raman光谱 [J]. 光谱学与光谱分析, 2016, 36(7): 2076-2081. FAN C H, GAO Y L, DU B. Response of FTIR and Raman spectra on cell wall of calendula of ficinalis seedlings roots to the co-contamination stress of lead and cadmium in loess [J]. Spectroscopy and Spectral Analysis, 2016, 36(7): 2076-2081(in Chinese).
[27] 杨顶田, 施国新, 陈伟民. Cr6+污染对水鳖的超微结构及菱、莼菜、黑藻细胞膜的影响 [J]. 武汉植物学研究, 2001, 19(6): 483-488,537. YANG D T, SHI G X, CHEN W M. The effects of Cr6+'s pollution on the ultrastructure of Hydrocharis dubia and cell membrane of H. verticillata, Brasenia schreberi, Trapa bispinosa [J]. Journal of Wuhan Botanical Research, 2001, 19(6): 483-488,537(in Chinese).
[28] 杨世勇, 王方, 谢建春. 重金属对植物的毒害及植物的耐性机制 [J]. 安徽师范大学学报(自然科学版), 2004, 27(1): 71-74,90. YANG S Y, WANG F, XIE J C. Plant toxicity of heavy metals and the tolerant mechanisms of plants [J]. Journal of Anhui Normal University (Natural Science), 2004, 27(1): 71-74,90(in Chinese).
[29] 李元, 王焕校, 吴玉树. Cd、Fe及其复合污染对烟草叶片几项生理指标的影响 [J]. 生态学报, 1992, 12(2): 147-154. doi: 10.3321/j.issn:1000-0933.1992.02.001 LI Y, WANG H X, WU Y S. Effects of cadmium and iron on the some physiological indicators in leaves of tobacco [J]. Acta Ecologica Sinica, 1992, 12(2): 147-154(in Chinese). doi: 10.3321/j.issn:1000-0933.1992.02.001
[30] SHAHID M, POURRUT B, DUMAT C, et al. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants [J]. Reviews of Environmental Contamination and Toxicology, 2014, 232: 1-44. doi: 10.1007/978-3-319-06746-9_1 [31] SKÓRZYŃSKA-POLIT E, PAWLIKOWSKA-PAWLĘGA B, SZCZUKA E, et al. The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses [J]. Plant Growth Regulation, 2006, 48(1): 29-39. doi: 10.1007/s10725-005-4745-6 [32] MISHRA S, SRIVASTAVA S, TRIPATHI R D, et al. Lead detoxification by coontail (Ceratophyllum demersum L. ) involves induction of phytochelatins and antioxidant system in response to its accumulation [J]. Chemosphere, 2006, 65(6): 1027-1039. doi: 10.1016/j.chemosphere.2006.03.033 [33] SINGH R, TRIPATHI R D, DWIVEDI S, et al. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system [J]. Bioresource Technology, 2010, 101(9): 3025-3032. doi: 10.1016/j.biortech.2009.12.031 [34] HOSSAIN M A, PIYATIDA P, da SILVA J A T, et al. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation [J]. Journal of Botany, 2012, 2012: 1-37. [35] VOLLENWEIDER P, MENARD T, GÜNTHARDT-GOERG M S. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level [J]. Environmental Pollution, 2011, 159(1): 324-336. doi: 10.1016/j.envpol.2010.07.013 [36] ZHOU Q, GU Y L, YUE X, et al. Combined toxicity and underlying mechanisms of a mixture of eight heavy metals [J]. Molecular Medicine Reports, 2017, 15(2): 859-866. doi: 10.3892/mmr.2016.6089 [37] AN Q R, HE X L, ZHENG N, et al. Physiological and genetic effects of cadmium and copper mixtures on carrot under greenhouse cultivation [J]. Ecotoxicology and Environmental Safety, 2020, 206: 111363. doi: 10.1016/j.ecoenv.2020.111363 [38] GUPTA M, SARIN N B. Heavy metal induced DNA changes in aquatic macrophytes: Random amplified polymorphic DNA analysis and identification of sequence characterized amplified region marker [J]. Journal of Environmental Sciences, 2009, 21(5): 686-690. doi: 10.1016/S1001-0742(08)62324-4 [39] 葛才林, 杨小勇, 孙锦荷, 等. 重金属胁迫引起的水稻和小麦幼苗DNA损伤 [J]. 植物生理与分子生物学学报, 2002, 28(6): 419-424. GE C L, YANG X Y, SUN J H, et al. DNA damage caused by heavy metal stress in rice and wheat seedlings [J]. Acta Photophysiologica Sinica, 2002, 28(6): 419-424(in Chinese).
[40] 吕朝晖, 王焕校. 镉铅对小麦醇脱氢酶(ADH)基因表达影响的初步研究 [J]. 环境科学学报, 1998, 18(5): 500-503. doi: 10.3321/j.issn:0253-2468.1998.05.010 LV Z H, WANG H X. Effects of cadmium and lead on adh gene experssion [J]. Acta Scientiae Circumstantiae, 1998, 18(5): 500-503(in Chinese). doi: 10.3321/j.issn:0253-2468.1998.05.010
[41] ZHANG Y X, CHAI T Y, DONG J, et al. Cloning and expression analysis of the heavy-metal responsive gene PvSR2 from bean [J]. Plant Science, 2001, 161(4): 783-790. doi: 10.1016/S0168-9452(01)00470-8 [42] NGUYEN VAN T. Assessment of combined toxic and genotoxic effects of soil metal pollutants: A laboratory and a field experiment using the test plant trifolium repens [D]. University of Milano-Bicocca, 2015. [43] LANIER C, BERNARD F, DUMEZ S, et al. Combined toxic effects and DNA damage to two plant species exposed to binary metal mixtures (Cd/Pb) [J]. Ecotoxicology and Environmental Safety, 2019, 167: 278-287. doi: 10.1016/j.ecoenv.2018.10.010 [44] LU C L, SVOBODA K R, LENZ K A, et al. Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans [J]. Environmental Science and Pollution Research, 2018, 25(16): 15378-15389. doi: 10.1007/s11356-018-1752-5 [45] COOPER N L, BIDWELL J R, KUMAR A. Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata [J]. Ecotoxicology and Environmental Safety, 2009, 72(5): 1523-1528. doi: 10.1016/j.ecoenv.2009.03.002 [46] VIJVER M G, ELLIOTT E G, PEIJNENBURG W J G M, et al. Response predictions for organisms water-exposed to metal mixtures: A meta-analysis [J]. Environmental Toxicology and Chemistry, 2011, 30(6): 1482-1487. doi: 10.1002/etc.499 [47] LUO W, VERWEIJ R A, van GESTEL C A M. Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination of physicochemical and biological methods [J]. Environmental Pollution, 2014, 185: 1-9. doi: 10.1016/j.envpol.2013.10.017 [48] WU X Y, COBBINA S J, MAO G H, et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment [J]. Environmental Science and Pollution Research, 2016, 23(9): 8244-8259. doi: 10.1007/s11356-016-6333-x [49] EUM K D, WEISSKOPF M G, NIE L H, et al. Cumulative lead exposure and age at menopause in the Nurses' Health Study cohort [J]. Environmental Health Perspectives, 2014, 122(3): 229-234. doi: 10.1289/ehp.1206399 [50] ADAMS S V, QURAISHI S M, SHAFER M M, et al. Dietary cadmium exposure and risk of breast, endometrial, and ovarian cancer in the Women's Health Initiative [J]. Environmental Health Perspectives, 2014, 122(6): 594-600. doi: 10.1289/ehp.1307054 [51] BLOOM M S, PARSONS P J, STEUERWALD A J, et al. Toxic trace metals and human oocytes during in vitro fertilization (IVF) [J]. Reproductive Toxicology, 2010, 29(3): 298-305. doi: 10.1016/j.reprotox.2010.01.003 [52] JEZIERSKA B, ŁUGOWSKA K, WITESKA M. The effects of heavy metals on embryonic development of fish (a review) [J]. Fish Physiology and Biochemistry, 2009, 35(4): 625-640. doi: 10.1007/s10695-008-9284-4 [53] WITESKA M, SARNOWSKI P, ŁUGOWSKA K, et al. The effects of cadmium and copper on embryonic and larval development of ide Leuciscus idus L [J]. Fish Physiology and Biochemistry, 2014, 40(1): 151-163. doi: 10.1007/s10695-013-9832-4 [54] 黄涛, 求瑞娟, 兰宗宝, 等. 稀土尾矿库渗漏水污染对花背蟾蜍胚后发育的毒性作用 [J]. 南方农业学报, 2019, 50(2): 412-417. doi: 10.3969/j.issn.2095-1191.2019.02.28 HUANG T, QIU R J, LAN Z B, et al. The toxic effects of leakage water from rare earth tailings reservoir on the postembryonic development of Strauchbufo raddei [J]. Journal of Southern Agriculture, 2019, 50(2): 412-417(in Chinese). doi: 10.3969/j.issn.2095-1191.2019.02.28
[55] 贾秀英, 董爱华, 马小梅. 镉致蟾蜍肝、肾脂质过氧化损伤 [J]. 应用与环境生物学报, 2004, 10(1): 92-94. doi: 10.3321/j.issn:1006-687X.2004.01.021 JIA X Y, DONG A H, MA X M. Effect of Cd2+ on lipid peroxidation in liver and kidney of Bufo gargarizans [J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(1): 92-94(in Chinese). doi: 10.3321/j.issn:1006-687X.2004.01.021
[56] van OOIK T, PAUSIO S, RANTALA M J. Direct effects of heavy metal pollution on the immune function of a geometrid moth, Epirrita autumnata [J]. Chemosphere, 2008, 71(10): 1840-1844. doi: 10.1016/j.chemosphere.2008.02.014 [57] BISER J A, VOGEL L A, BERGER J, et al. Effects of heavy metals on immunocompetence of white-footed mice (Peromyscus leucopus) [J]. Journal of Wildlife Diseases, 2004, 40(2): 173-184. doi: 10.7589/0090-3558-40.2.173 [58] SORVARI J, RANTALA L M, RANTALA M J, et al. Heavy metal pollution disturbs immune response in wild ant populations [J]. Environmental Pollution, 2007, 145(1): 324-328. doi: 10.1016/j.envpol.2006.03.004 [59] CHATELAIN M, GASPARINI J, FRANTZ A. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia) [J]. Ecotoxicology, 2016, 25(3): 521-529. doi: 10.1007/s10646-016-1610-5 [60] BAHADAR H, ABDOLLAHI M, MAQBOOL F, et al. Mechanistic overview of immune modulatory effects of environmental toxicants [J]. Inflammation & Allergy-Drug Targets, 2015, 13(6): 382-386. [61] LUTZ W, WASOWICZ W. Metal-induced modulation of redox cell-signaling in the immune system [J]. Comments on Toxicology, 2003, 9(1): 59-83. doi: 10.1080/08865140302422 [62] DONG J S, LI J J, CUI L Y, et al. Cortisol modulates inflammatory responses in LPS-stimulated RAW264.7 cells via the NF-κB and MAPK pathways [J]. BMC Veterinary Research, 2018, 14(1): 30. doi: 10.1186/s12917-018-1360-0 [63] JADHAV S H, SARKAR S N, RAM G C, et al. Immunosuppressive effect of subchronic exposure to a mixture of eight heavy metals, found as groundwater contaminants in different areas of India, through drinking water in male rats [J]. Archives of Environmental Contamination and Toxicology, 2007, 53(3): 450-458. doi: 10.1007/s00244-006-0177-1 [64] 江红霞, 凌洁彬, 叶凯甲, 等. 铜和镉对草鱼肾脏中3种白细胞介素基因表达的影响 [J]. 水产科学, 2019, 38(2): 220-225. JIANG H X, LING J B, YE K J, et al. Effects of copper and cadmium on expression of three interleukin genes in kidney of grass carp Ctenopharyngodon idellus [J]. Fisheries Science, 2019, 38(2): 220-225(in Chinese).
[65] MORCILLO P, CORDERO H, MESEGUER J, et al. In vitro immunotoxicological effects of heavy metals on European sea bass (Dicentrarchus labrax L. ) head-kidney leucocytes [J]. Fish & Shellfish Immunology, 2015, 47(1): 245-254. [66] 白晓娟. 树麻雀免疫系统对环境重金属污染响应的研究[D]. 兰州: 兰州大学, 2019. BAI X J. Study on the response of immune system in tree sparrow to environmental heavy metals pollution[D]. Lanzhou: Lanzhou University, 2019(in Chinese).
[67] GERHARDSSON L, ENGLYST V, LUNDSTRÖM N G, et al. Cadmium, copper and zinc in tissues of deceased copper smelter workers [J]. Journal of Trace Elements in Medicine and Biology, 2002, 16(4): 261-266. doi: 10.1016/S0946-672X(02)80055-4 [68] SOLGI E, MIRMOHAMMADVALI S. Comparison of the heavy metals, copper, iron, magnesium, nickel, and zinc between muscle and gills of four benthic fish species from shif island (Iran) [J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(4): 658-664. doi: 10.1007/s00128-021-03155-1 [69] MORCILLO P, CORDERO H, MESEGUER J, et al. Toxicological in vitro effects of heavy metals on gilthead seabream (Sparus aurata L. ) head-kidney leucocytes [J]. Toxicology in Vitro, 2015, 30(1): 412-420. doi: 10.1016/j.tiv.2015.09.021 [70] HANDY R D. Chronic effects of copper exposure versus endocrine toxicity: Two sides of the same toxicological process? [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2003, 135(1): 25-38. [71] 顾成武. 铅镉联合对发育期大鼠中枢神经系统二价金属转运蛋白DMT1基因表达的影响[D]. 汕头: 汕头大学, 2008. GU C W. Combined effect of lead and cadmium on DMT1 expression in central nervous system of budding rat[D]. Shantou, China: Shantou University, 2008(in Chinese).
[72] KARRI V, SCHUHMACHER M, KUMAR V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain [J]. Environmental Toxicology and Pharmacology, 2016, 48: 203-213. doi: 10.1016/j.etap.2016.09.016 [73] REGLERO M M, TAGGART M A, CASTELLANOS P, et al. Reduced sperm quality in relation to oxidative stress in red deer from a lead mining area [J]. Environmental Pollution, 2009, 157(8/9): 2209-2215. [74] ADEMUYIWA O, AGARWAL R, CHANDRA R, et al. Effects of sub-chronic low-level lead exposure on the homeostasis of copper and zinc in rat tissues [J]. Journal of Trace Elements in Medicine and Biology, 2010, 24(3): 207-211. doi: 10.1016/j.jtemb.2010.01.002 [75] JANKOVSKÁ I, MIHOLOVÁ D, LANGROVÁ I, et al. Influence of parasitism on the use of small terrestrial rodents in environmental pollution monitoring [J]. Environmental Pollution, 2009, 157(8/9): 2584-2586. [76] COBBINA S J, CHEN Y, ZHOU Z X, et al. Low concentration toxic metal mixture interactions: Effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure [J]. Chemosphere, 2015, 132: 79-86. doi: 10.1016/j.chemosphere.2015.03.013 [77] RAI N K, ASHOK A, RAI A, et al. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and Retina [J]. Toxicology and Applied Pharmacology, 2013, 273(2): 242-258. doi: 10.1016/j.taap.2013.05.003 [78] BOELSTERLI U A. Mechanistic toxicology: The molecular basis of how chemicals disrupt biological targets[M]. New York:Toxicology,2003 [79] VERMA R, XU X F, JAISWAL M K, et al. In vitro profiling of epigenetic modifications underlying heavy metal toxicity of tungsten-alloy and its components [J]. Toxicology and Applied Pharmacology, 2011, 253(3): 178-187. doi: 10.1016/j.taap.2011.04.002 [80] LOU J L, JIN L Z, WU N X, et al. DNA damage and oxidative stress in human B lymphoblastoid cells after combined exposure to hexavalent chromium and nickel compounds [J]. Food and Chemical Toxicology, 2013, 55: 533-540. doi: 10.1016/j.fct.2013.01.053 [81] DORNE J L C M, RAGAS A M J, FRAMPTON G K, et al. Trends in human risk assessment of pharmaceuticals [J]. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1167-1172. doi: 10.1007/s00216-006-0961-9 [82] XUE S G, SHI L Z, WU C, et al. Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines [J]. Environmental Research, 2017, 156: 23-30. doi: 10.1016/j.envres.2017.03.014 [83] WU B, LIU Z T, XU Y, et al. Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta) [J]. Ecotoxicology and Environmental Safety, 2012, 81: 122-126. doi: 10.1016/j.ecoenv.2012.05.003 [84] VELLINGER C, GISMONDI E, FELTEN V, et al. Single and combined effects of cadmium and arsenate in Gammarus pulex (Crustacea, Amphipoda): Understanding the links between physiological and behavioural responses [J]. Aquatic Toxicology, 2013, 140/141: 106-116. doi: 10.1016/j.aquatox.2013.05.010 [85] CHOI Y, PARK K, KIM I, et al. Combined toxic effect of airborne heavy metals on human lung cell line A549 [J]. Environmental Geochemistry and Health, 2018, 40(1): 271-282. doi: 10.1007/s10653-016-9901-6 [86] HAMBACH R, LISON D, D’HAESE P C, et al. Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers [J]. Toxicology Letters, 2013, 222(2): 233-238. doi: 10.1016/j.toxlet.2013.06.218 [87] YANG D F, LIU Y L, LIU S, et al. Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China [J]. Chemosphere, 2020, 250: 126289. doi: 10.1016/j.chemosphere.2020.126289 [88] 张迎梅, 王叶菁, 虞闰六, 等. 重金属Cd2+、Pb2+和Zn2+对泥鳅DNA损伤的研究 [J]. 水生生物学报, 2006, 30(4): 399-403. doi: 10.3321/j.issn:1000-3207.2006.04.005 ZHANG Y M, WANG Y J, YU R L, et al. Effects of heavy metals Cd2+, Pb2+ and Zn2+ on DNA damage of loach Misgurnus anguillicandatus [J]. Acta Hydrobiologica Sinica, 2006, 30(4): 399-403(in Chinese). doi: 10.3321/j.issn:1000-3207.2006.04.005
[89] SARKAR A. Biomarkers of marine pollution and bioremediation [J]. Ecotoxicology, 2006, 15(4): 331-332. doi: 10.1007/s10646-006-0073-5 [90] VIDALI M. Bioremediation. An overview [J]. Pure and Applied Chemistry, 2001, 73(7): 1163-1172. doi: 10.1351/pac200173071163 [91] MARTÍNEZ-PACHECO M, HIDALGO-MIRANDA A, ROMERO-CÓRDOBA S, et al. mRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects [J]. Gene, 2014, 533(2): 508-514. doi: 10.1016/j.gene.2013.09.049 [92] 吴晓亭, 王晓昌, 马晓妍. 固定毒性配比法研究重金属与土霉素的联合毒性 [J]. 环境工程学报, 2017, 11(1): 626-631. doi: 10.12030/j.cjee.201508115 WU X T, WANG X C, MA X Y. Joint toxicities of binary mixtures between heavy metals and OTC based on predefined TU ratios [J]. Chinese Journal of Environmental Engineering, 2017, 11(1): 626-631(in Chinese). doi: 10.12030/j.cjee.201508115
[93] GE H L, LIU S S, SU B X, et al. Predicting synergistic toxicity of heavy metals and ionic liquids on Photobacterium Q67 [J]. Journal of Hazardous Materials, 2014, 268: 77-83. doi: 10.1016/j.jhazmat.2014.01.006 [94] BAAS J, van HOUTE B P P, van GESTEL C A M, et al. Modeling the effects of binary mixtures on survival in time [J]. Environmental Toxicology and Chemistry, 2007, 26(6): 1320-1327. doi: 10.1897/06-437R.1 [95] LOEWE S, MUISCHNEK H. Effect of combinations: Mathematical basis of problem[J]. Arch Exp Pathol Pharmakol,1926 [96] SPURGEON D J, JONES O A H, DORNE J L C M, et al. Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures [J]. Science of the Total Environment, 2010, 408(18): 3725-3734. doi: 10.1016/j.scitotenv.2010.02.038 [97] BACKHAUS T, SCHOLZE M, GRIMME L H. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri [J]. Aquatic Toxicology, 2000, 49(1/2): 49-61. [98] JUNGHANS M, BACKHAUS T, FAUST M, et al. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction [J]. Pest Management Science, 2003, 59(10): 1101-1110. doi: 10.1002/ps.735 [99] FAUST M, ALTENBURGER R, BACKHAUS T, et al. Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action [J]. Aquatic Toxicology, 2003, 63(1): 43-63. doi: 10.1016/S0166-445X(02)00133-9 [100] WALTER H, CONSOLARO F, GRAMATICA P, et al. Mixture toxicity of priority pollutants at no observed effect concentrations (NOECs) [J]. Ecotoxicology, 2002, 11(5): 299-310. doi: 10.1023/A:1020592802989 [101] DRESCHER K, BOEDEKER W. Assessment of the combined effects of substances: The relationship between concentration addition and independent action [J]. Biometrics, 1995, 51(2): 716. doi: 10.2307/2532957 [102] BACKHAUS T, FAUST M, SCHOLZE M, et al. Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action [J]. Environmental Toxicology and Chemistry, 2004, 23(2): 258-264. doi: 10.1897/02-497 [103] 陈朗, 姜辉, 贾俊超, 等. 农药混配制剂环境风险评估现状与展望 [J]. 生态毒理学报, 2017, 12(4): 15-24. doi: 10.7524/AJE.1673-5897.20170527003 CHEN L, JIANG H, JIA J C, et al. Environmental risk assessment for mixed pesticide products: Current situation and prospects [J]. Asian Journal of Ecotoxicology, 2017, 12(4): 15-24(in Chinese). doi: 10.7524/AJE.1673-5897.20170527003
[104] PUCKOWSKI A, STOLTE S, WAGIL M, et al. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna [J]. International Journal of Hygiene and Environmental Health, 2017, 220(3): 575-582. doi: 10.1016/j.ijheh.2017.01.011 [105] GAO Y F, FENG J F, KANG L L, et al. Concentration addition and independent action model: Which is better in predicting the toxicity for metal mixtures on zebrafish larvae [J]. Science of the Total Environment, 2018, 610/611: 442-450. doi: 10.1016/j.scitotenv.2017.08.058 [106] YOO J W, CHO H, LEE K W, et al. Combined effects of heavy metals (Cd, As, and Pb): Comparative study using conceptual models and the antioxidant responses in the brackish water flea [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2021, 239: 108863. [107] BACKHAUS T, FAUST M. Predictive environmental risk assessment of chemical mixtures: A conceptual framework [J]. Environmental Science & Technology, 2012, 46(5): 2564-2573. [108] NYS C, VERSIEREN L, CORDERY K I, et al. Systematic evaluation of chronic metal-mixture toxicity to three species and implications for risk assessment [J]. Environmental Science & Technology, 2017, 51(8): 4615-4623. [109] THRUPP T J, RUNNALLS T J, SCHOLZE M, et al. The consequences of exposure to mixtures of chemicals: Something from ‘nothing’ and ‘a lot from a little’ when fish are exposed to steroid hormones [J]. Science of the Total Environment, 2018, 619/620: 1482-1492. doi: 10.1016/j.scitotenv.2017.11.081 [110] ZHU B, WU Z F, LI J, et al. Single and joint action toxicity of heavy metals on early developmental stages of Chinese rare minnow (Gobiocypris rarus) [J]. Ecotoxicology and Environmental Safety, 2011, 74(8): 2193-2202. doi: 10.1016/j.ecoenv.2011.07.033 [111] HUANG W Y, LIU F, LIU S S, et al. Predicting mixture toxicity of seven phenolic compounds with similar and dissimilar action mechanisms to Vibrio qinghaiensis sp. nov. Q67 [J]. Ecotoxicology and Environmental Safety, 2011, 74(6): 1600-1606. doi: 10.1016/j.ecoenv.2011.01.007 [112] ZENG J J, CHEN F, LI M, et al. The mixture toxicity of heavy metals on Photobacterium phosphoreum and its modeling by ion characteristics-based QSAR [J]. PLoS One, 2019, 14(12): e0226541. doi: 10.1371/journal.pone.0226541 [113] XIE M D, SUN Y X, FENG J F, et al. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model [J]. Aquatic Toxicology, 2019, 210: 106-116. doi: 10.1016/j.aquatox.2019.02.018 [114] FONSECA G, GALLUCCI F. The need of hypothesis-driven designs and conceptual models in impact assessment studies: An example from the free-living marine Nematodes [J]. Ecological Indicators, 2016, 71: 79-86. doi: 10.1016/j.ecolind.2016.06.051 [115] DI TORO D M, ALLEN H E, BERGMAN H L, et al. Biotic ligand model of the acute toxicity of metals. 1. Technical Basis [J]. Environmental Toxicology and Chemistry, 2001, 20(10): 2383-2396. doi: 10.1002/etc.5620201034 [116] MARTINS R J E, BOAVENTURA R A R. Uptake and release of zinc by aquatic bryophytes (Fontinalis antipyretica L. ex. Hedw.) [J]. Water Research, 2002, 36(20): 5005-5012. doi: 10.1016/S0043-1354(02)00233-6 [117] CHEN B C, WANG P J, HO P C, et al. Nonlinear biotic ligand model for assessing alleviation effects of Ca, Mg, and K on Cd toxicity to soybean roots [J]. Ecotoxicology, 2017, 26(7): 942-955. doi: 10.1007/s10646-017-1823-2