[1] GUO Y, KANNAN K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States [J]. Environmental Science and Technology, 2011, 45(8): 3788-3794. doi: 10.1021/es2002106
[2] GUO Y, WANG L, KANNAN K. Phthalates and parabens in personal care products from China: Concentrations and human exposure [J]. Archives of Environmental Contamination and Toxicology, 2014, 66(1): 113-119. doi: 10.1007/s00244-013-9937-x
[3] WANG X K, TAO W, XU Y, et al. Indoor phthalate concentration and exposure in residential and office buildings in Xi'an, China [J]. Atmospheric Environment, 2014, 87: 146-152. doi: 10.1016/j.atmosenv.2014.01.018
[4] 王立鑫, 赵彬, 刘聪, 等. 室内邻苯二甲酸酯(PAEs)暴露量分析 [J]. 建筑科学, 2010, 26(6): 73-80. doi: 10.3969/j.issn.1002-8528.2010.06.017 WANG L X, ZHAO B, LIU C, et al. Analysis on exposure of indoor phthalic acid esters [J]. Building Science, 2010, 26(6): 73-80(in Chinese). doi: 10.3969/j.issn.1002-8528.2010.06.017
[5] AIT BAMAI Y, SHIBATA E, SAITO I, et al. Exposure to house dust phthalates in relation to asthma and allergies in both children and adults [J]. Science of Total Environment, 2014, 485-486: 153-163. doi: 10.1016/j.scitotenv.2014.03.059
[6] ZHANG J, LIU L P, WANG X F, et al. Low-level environmental phthalate exposure associates with urine metabolome alteration in a Chinese male cohort [J]. Environmental Science and Technology, 2016, 50(11): 5953-5960. doi: 10.1021/acs.est.6b00034
[7] SWAN S H. Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans [J]. Environmental Research, 2008, 108(2): 177-184. doi: 10.1016/j.envres.2008.08.007
[8] WESCHLER C J, SALTHAMMER T, FROMME H. Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments [J]. Atmospheric Environment, 2008, 42(7): 1449-1460. doi: 10.1016/j.atmosenv.2007.11.014
[9] WU Y, EICHLER C M, CHEN S, et al. Simple method to measure the vapor pressure of phthalates and their alternatives [J]. Environmental Science and Technology, 2016, 50(18): 10082-10088. doi: 10.1021/acs.est.6b02643
[10] LITTLE J C, WESCHLER C J, NAZAROFF W W, et al. Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment [J]. Environmental Science and Technology, 2012, 46(20): 11171-11178. doi: 10.1021/es301088a
[11] WEI W J, MANDIN C, BLANCHARD O, et al. Distributions of the particle/gas and dust/gas partition coefficients for seventy-two semi-volatile organic compounds in indoor environment [J]. Chemosphere, 2016, 153: 212-219. doi: 10.1016/j.chemosphere.2016.03.007
[12] XU Y, LITTLE J C. Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles [J]. Environmental Science and Technology, 2006, 40: 456-461. doi: 10.1021/es051517j
[13] SUKIENE V, VON GOETZ N, GERECKE A C, et al. Direct and air-mediated transfer of labeled SVOCs from indoor sources to dust [J]. Environmental Science and Technology, 2017, 51(6): 3269-3277. doi: 10.1021/acs.est.6b06051
[14] LIU C, SHI S S, WESCHLER C, et al. Analysis of the dynamic interaction between SVOCs and airborne particles [J]. Aerosol Science and Technology, 2013, 47(2): 125-136. doi: 10.1080/02786826.2012.730163
[15] HUANG L H, HOPKE P K, ZHAO W P, et al. Determinants on ambient PM2.5 infiltration in non-heating season for urban residences in Beijing: Building characteristics, interior surface coverings and human behavior [J]. Atmospheric Pollution Research, 2015, 6(6): 1046-1054. doi: 10.1016/j.apr.2015.05.009
[16] HUANG L H, PU Z N, LI M, et al. Characterizing the indoor-outdoor relationship of fine particulate matter in non-heating season for urban residences in Beijing [J]. PLoS One, 2015, b: 10. doi: 10.1371/journal.pone.0138559
[17] HUANG L H, QIAO Y Q, DENG S X, et al. Airborne phthalates in indoor environment: Partition state and influential built environmental conditions [J]. Chemosphere, 2020: 254. doi: 10.1016/j.chemosphere.2020.126782
[18] 乔雅绮, 黄立辉. 住宅室内降尘中邻苯二甲酸酯的污染特征及传输途径 [J]. 环境化学, 2020, 39(6): 1523-1529. doi: 10.7524/j.issn.0254-6108.2020020601 QIAO Y Q, HUANG L H. Characterization of phthalates in residential house dust and their transfer routes [J]. Environmental Chemistry, 2020, 39(6): 1523-1529(in Chinese). doi: 10.7524/j.issn.0254-6108.2020020601
[19] HUANG L H, QIAO Y Q, DENG S X, et al. Urban residential indoor volatile organic compounds in summer, Beijing: Profile, concentration and source characterization [J]. Atmospheric Environment, 2018, 188: 1-11. doi: 10.1016/j.atmosenv.2018.06.009
[20] FINIZIO A, MACKAY D,BIDLEMAN T,et al. Octanol–air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols [J]. Atmospheric Environment, 1997, 31: 2289-2296. doi: 10.1016/S1352-2310(97)00013-7
[21] HARNER T. Octanol-air partition coefficient for describing particle_gas partitioning of aromatic compounds in urban air [J]. Environmental Science and Technology, 1998, 32: 1494-1502. doi: 10.1021/es970890r
[22] PANKOW J F. An absorption model of gas/particle partitioning of organic compounds in the atmosphere [J]. Atmospheric Environment, 1994, 28: 185-188. doi: 10.1016/1352-2310(94)90093-0
[23] PANKOW J F. Further discussion of the octanol/air partition coefficient Koa as a correlating parameter for gas/particle partitioning coefficients [J]. Atmospheric Environment, 1998, 32: 1493-1497. doi: 10.1016/S1352-2310(97)00383-X
[24] SHOEIB M, HARNER T, WILFORD BRYONY H,et al. Perfluorinated sulfonamides in indoor and outdoor air and indoor dust_ occurrence, partitioning and human exposure [J]. Environmental Science and Technology, 2005, 39: 6599-6606. doi: 10.1021/es048340y
[25] WESCHLER C J, NAZAROFF W W. SVOC partitioning between the gas phase and settled dust indoors [J]. Atmospheric Environment, 2010, 44(30): 3609-3620. doi: 10.1016/j.atmosenv.2010.06.029
[26] LYMAN W J, REEHL W F, ROSENBLATT D H. Handbook of chemical property estimation methods: Environmental behavior of organic compounds [M]. McGraw-Hill Book Company, 1981.
[27] TIAN Y L, SUL K, QIAN J, et al. A comparative study of walking-induced dust resuspension using a consistent test mechanism [J]. Indoor Air, 2014, 24(6): 592-603. doi: 10.1111/ina.12107
[28] QIAN J, FERRO A R. Resuspension of dust particles in a chamber and associated environmental factors [J]. Aerosol Science and Technology, 2008, 42(7): 566-578. doi: 10.1080/02786820802220274
[29] CHEN Y, LV D, LI X H, et al. PM2.5-bound phthalates in indoor and outdoor air in Beijing: Seasonal distributions and human exposure via inhalation [J]. Environmental Pollution, 2018, 241: 369-377. doi: 10.1016/j.envpol.2018.05.081
[30] WANG Y, DING D, SHU M S, et al. Characteristics of indoor and outdoor fine phthalates during different seasons and haze periods in Beijing [J]. Aerosol and Air Quality Research, 2019, 19(2): 364-374. doi: 10.4209/aaqr.2018.03.0114
[31] ZHU Z Y, JI Y Q, ZHANG S J, et al. Phthalate ester concentrations, sources, and risks in the ambient air of Tianjin, China [J]. Aerosol and Air Quality Research, 2016, 16: 2294-2301. doi: 10.4209/aaqr.2015.07.0473
[32] 吕子峰, 郝吉明, 段菁春, 等. 北京市夏季二次有机气溶胶生成潜势的估算 [J]. 环境科学, 2009, 30(4): 969-975. doi: 10.3321/j.issn:0250-3301.2009.04.005 LV Z F, HAO J M, DUAN J C, et al. Characterization of phthalates in residential house dust and their transfer routes [J]. Environmental Chemistry, 2009, 30(4): 969-975(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.04.005
[33] JANG M. A thermodynamic approach for modeling partitioning of semivolatile organic compounds on atmospheric particulate matter humidity effects [J]. Environmental Science and Technology, 1988, 32: 1237-1243.
[34] SALTHAMMER T, SCHRIPP T. Application of the Junge- and Pankow-equation for estimating indoor gas/particle distribution and exposure to SVOCs [J]. Atmospheric Environment, 2015, 106: 467-476. doi: 10.1016/j.atmosenv.2014.09.050
[35] QIAN J, FERRO A R, FOWLER K R. Estimating the resuspension rate and residence time of indoor particles [J]. Journal of Air and Waste Management Association, 2008, 58(4): 502-516. doi: 10.3155/1047-3289.58.4.502