[1] HUGGETT D B, KHAN I A, FORAN C M, et al. Determination of beta-adrenergic receptor blocking pharmaceuticals in United States wastewater effluent [J]. Environmental Pollution, 2003, 121(2): 199-205. doi: 10.1016/S0269-7491(02)00226-9
[2] CLEUVERS M. Initial risk assessment for three beta-blockers found in the aquatic environment [J]. Chemosphere, 2005, 59(2): 199-205. doi: 10.1016/j.chemosphere.2004.11.090
[3] 彭祖华, 池剑, 孙立伟, 等. β-肾上腺受体阻滞剂的水生态毒理学研究进展 [J]. 生态毒理学报, 2013, 8(4): 494-503. doi: 10.7524/AJE.1673-5897.20120608001 PENG Z H, CHI J, SUN L W, et al. Current progress in the aquatic ecotoxicology of β-adrenergic receptor blockers [J]. Asian Journal of Ecotoxicology, 2013, 8(4): 494-503(in Chinese). doi: 10.7524/AJE.1673-5897.20120608001
[4] CANONICA S, MEUNIER L, VON GUNTEN U. Phototransformation of selected pharmaceuticals during UV treatment of drinking water [J]. Water Research, 2008, 42(1/2): 121-128.
[5] XIANG Y Y, FANG J Y, SHANG C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process [J]. Water Research, 2016, 90: 301-308. doi: 10.1016/j.watres.2015.11.069
[6] WANG W L, WU Q Y, HUANG N, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species [J]. Water Research, 2016, 98: 190-198. doi: 10.1016/j.watres.2016.04.015
[7] LI J Q, ZHOU S Q, LI M, et al. Mechanism insight of acetaminophen degradation by the UV/chlorine process: Kinetics, intermediates, and toxicity assessment [J]. Environmental Science and Pollution Research, 2019, 26(24): 25012-25025. doi: 10.1007/s11356-019-05747-1
[8] 伊学农, 方佳男, 高玉琼, 等. 紫外线-氯联合高级氧化体系降解水中的萘普生 [J]. 环境工程学报, 2019, 13(5): 1030-1037. doi: 10.12030/j.cjee.201811102 YI X N, FANG J N, GAO Y Q, et al. Degradation of naproxen in water by UV/chlorine advanced oxidation process [J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1030-1037(in Chinese). doi: 10.12030/j.cjee.201811102
[9] RIVAS F J, GIMENO O, BORRALHO, et al. UV-C radiation based methods for aqueous metoprolol elimination [J]. Journal of Hazardous Materials, 2010, 179(1-3): 357-362. doi: 10.1016/j.jhazmat.2010.03.013
[10] ACERO J L, BENITEZ F J, REAL F J, et al. Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices [J]. Water Research, 2010, 44(14): 4158-4170. doi: 10.1016/j.watres.2010.05.012
[11] FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system [J]. Environmental Science & Technology, 2014, 48(3): 1859-1868.
[12] WU Z H, FANG J Y, XIANG Y Y, et al. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways [J]. Water Research, 2016, 104: 272-282. doi: 10.1016/j.watres.2016.08.011
[13] WOLS B A, HARMSEN D J H, BEERENDONK E F, et al. Predicting pharmaceutical degradation by UV (LP)/H2O2 processes: A kinetic model [J]. Chemical Engineering Journal, 2014, 255: 334-343. doi: 10.1016/j.cej.2014.05.088
[14] ZHANG Y Q, ZHANG J F, XIAO Y J, et al. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate [J]. Chemical Engineering Journal, 2016, 302: 526-534. doi: 10.1016/j.cej.2016.05.085
[15] 赵刘柱, 吴敏, 朱延平, 等. 紫外—氯降解非那西丁影响因素及机理研究 [J]. 水处理技术, 2019, 45(3): 69-73,78. ZHAO L Z, WU M, ZHU Y P, et al. Influencing factors and mechanism of ultraviolet/chlorine degradation on phenacetin [J]. Technology of Water Treatment, 2019, 45(3): 69-73,78(in Chinese).
[16] DENG J, WU G X, YUAN S J, et al. Ciprofloxacin degradation in UV/chlorine advanced oxidation process: Influencing factors, mechanisms and degradation pathways [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 371: 151-158. doi: 10.1016/j.jphotochem.2018.10.043
[17] JIA X R, JIN J, GAO R, et al. Degradation of benzophenone-4 in a UV/chlorine disinfection process: Mechanism and toxicity evaluation [J]. Chemosphere, 2019, 222: 494-502. doi: 10.1016/j.chemosphere.2019.01.186
[18] RADJENOVIC J, ESCHER B I, BABAEY K. Electrochemical degradation of the β-blocker metoprolol by Ti/Ru0.7Ir0.3O2 and Ti/SnO2-Sb electrodes [J]. Water Research, 2011, 45: 3205-3214. doi: 10.1016/j.watres.2011.03.040
[19] ROMERO V, ACEVEDO S, MARCO P, et al. Enhancement of Fenton and photo-Fenton processes at initial circumneutral pH for the degradation of the β-blocker metoprolol [J]. Water Research, 2016, 88: 449-457.
[20] TAY K S, RAHMAN N A, ABAS M R B. Ozonation of metoprolol in aqueous solution: Ozonation by-products and mechanisms of degradation [J]. Environmental Science and Pollution Research, 2013, 20(5): 3115-3121. doi: 10.1007/s11356-012-1223-3
[21] WILDE M L, MAHMOUD W M M, KUMMERER K, et al. Oxidation-coagulation of β-blockers by K2FeVIO4 in hospital wastewater: Assessment of degradation products and biodegradability [J]. Science of The Total Environment, 2013, 452-453: 137-147. doi: 10.1016/j.scitotenv.2013.01.059
[22] YANG Y, LU X L, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate [J]. Water Research, 2017, 118: 196-207. doi: 10.1016/j.watres.2017.03.054
[23] WANG J B, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode [J]. Water Research, 2018, 137: 324-334. doi: 10.1016/j.watres.2018.03.030