-
药物和个人护理用品(pharmaceutical and personal care products, PPCPs)作为水中新兴污染物受到人们的广泛关注。美托洛尔(MTP)是目前临床上使用最多的3种β受体阻滞剂之一,也是一种典型的PPCPs,被广泛应用于治疗高血压、冠心病、心力衰竭等多种心血管疾病。近年来,随着人口老龄化不断地加剧,这类药物被大量生产和使用,并且MTP及其代谢产物可以通过人体排泄的方式进入市政排水管网,随后汇集到污水处理厂。由于污水处理厂现有工艺难以有效去除此类药物,因此相当一部此类药物会随着污水厂的出水进入到天然水体中,进而会污染饮用水水源。相关报道表明,MTP在水环境中被频繁检出,其浓度水平达到ng·L−1至μg·L−1级别[1]。此外,MTP对水生生物存在一定的毒性危害[2-3]。因此亟需寻求一种高效的去除方法,以减轻或消除该类污染物的环境负面效应。
高级氧化工艺(AOP)是一种降解水中PPCPs的有效方法。其中,基于紫外的高级氧化工艺由于具有操作简便,处理成本低,去除效率高,二次污染较小等优点,受到研究者的关注[4]。氯是一种强氧化剂,由于价格便宜,具有较强的杀菌能力,被广泛应用于水处理中的消毒工艺。而且,紫外线照射也是一种常见的消毒手段,常用于二沉池出水的消毒。在紫外光照射下,氯可以分解产生羟基自由基(·OH)和氯自由基(如Cl·、ClO·、Cl2·−等),其中,·OH是一种非选择性的活性基团,能够较快地与大多数有机物进行反应,而氯自由基是一种选择性的活性基团,更倾向于与含有苯环等富电子基团有机物进行反应。紫外光和氯组合工艺(UV/Cl2)已被证实能够有效地降解水体中的微量有机污染物,如布诺芬、卡马西平、对乙酰氨基酚、萘普生等[5-8]。因而,UV/Cl2工艺作为一种新型高级氧化工艺在水处理中具有潜在的应用前景。
本研究采用UV/Cl2工艺降解水中的MTP,主要考察不同体系(单独UV、避光氯化、UV/Cl2工艺)、溶液pH值、氯投加量、阴离子(HCO3−、Cl−)以及天然有机物对MTP降解效果的影响。并且利用LC/MS/MS鉴定了MTP降解的主要中间产物,阐明了降解机理。研究结果可为UV/Cl2工艺控制水中此类污染物的提供理论基础。
紫外光-氯工艺降解美托洛尔的影响因素与机理
Influencing factors and mechanism of metoprolol degradation by UV/chlorine process
-
摘要: 利用紫外光和氯组合工艺(UV/Cl2)降解水中β受体阻滞剂美托洛尔(MTP)。考察了不同体系(单独UV、避光氯化、UV/Cl2)、溶液pH值、氯投加量、HCO3−、Cl−以及天然有机物对MTP降解的影响,并通过液相色谱质谱联用检测了降解中间产物,提出了可能的降解路径,并评估了生态风险。结果表明,单独的紫外光或避光氯几乎不能够降解MTP,而UV/Cl2工艺降解MTP的效率大大提高,15 min时MTP的去除率高达96.2%,且UV/Cl2工艺对MTP的降解遵循拟一级反应动力学模型。酸性条件下有利于MTP的降解,且氯自由基(RCS)对MTP降解的贡献随着溶液pH值的增加而增加。HCO3−和天然有机物均不同程度地抑制了MTP的降解,而Cl−的影响可忽略不计。通过中间产物分析可知,MTP的降解的主要反应途径包括羟基化、芳香醚键的断裂、脱甲氧基、脱烷基等机制。ECOSAR模型预测结果表明,UV/Cl2工艺能够降低MTP的生态风险。Abstract: UV/chlorine process was adopted to degrade metoprolol (MTP), a β-blockers in water. The effects of different systems (UV alone, dark chlorination, UV/chlorine), solution pH value, chlorine dosage, HCO3−, Cl− and natural organic matter on the MTP degradation were investigated. The degradation intermediate products were identified by LC/MS/MS, and the possible degradation pathways were proposed. The ecological risk was also evaluated. The results indicated that UV alone or dark chlorination can hardly degrade MTP, while the degradation efficiency is greatly improved by the UV/chlorine process, and the removal rate can reach to 96.2% within 15 minutes. The degradation of MTP also well followed with the pseudo-first-order kinetic model. Acidic condition favored MTP degradation, and the contribution of reactive chlorine specie (RCS) towards MTP degradation increased as the solution pH value increased. HCO3− and natural organic matter inhibited MTP degradation to different extents, while the effect of Cl− was negligible. Through the analysis of intermediate products, the degradation mechanism of MTP may involve hydroxylation, the cleavage of aromatic ether bond, demethoxylation and dealkylation, etc. The predicted results of ECOSAR model showed that the UV/chlorine process can reduce the ecological risk of MTP.
-
Key words:
- UV/chlorine process /
- metoprolol /
- influencing factors /
- degradation mechanism /
- toxicity evaluation
-
表 1 MTP及其降解中间产物质谱参数
Table 1. Mass spectrum parameters of MTP and its intermediates
化合物
Compounds分子量
Molecular
weight保留时间
Retention
time/min质荷比
Mass-to-charge
ratio(m/z)MS/MS碎片
MS/MS
fragmentation分子结构
Molecular structureMTP 267 14.88 268 56,74,92,116,133,159 P1 283 14.03 284 116,175,234,252 P2 299 12.56 300 238,282 P3 283 2.46 284 116,175,224,248 P4 281 14.74 282 98,218,240 P5 133 1.84 134 56,74,92,116 P6 115 14.96 116 56,74,98 P7 239 2.22 240 74,163,198 P8 253 12.02 254 133,159,236 P9 225 14.91 226 56,74,133,191 表 2 MTP及其降解中间产物急性毒性
Table 2. Acute toxicity of MTP and its intermediates
化合物
Compounds鱼Fish
96 h-LC50/(mg·L−1)水蚤Daphnid
48 h-LC50/( mg·L−1)绿藻Green algae
96 h-EC50/( mg·L−1)MTP 81.6 9.38 8.31 P1 263 27.8 29.2 P2 390 40.2 44.3 P3 479 48.3 55.5 P4 669 65.8 79.6 P5 1990 170 272 P6 238 23.6 28 P7 239 25.1 26.6 P8 28.7 27.6 15.3 P9 550 53.9 65.5 -
[1] HUGGETT D B, KHAN I A, FORAN C M, et al. Determination of beta-adrenergic receptor blocking pharmaceuticals in United States wastewater effluent [J]. Environmental Pollution, 2003, 121(2): 199-205. doi: 10.1016/S0269-7491(02)00226-9 [2] CLEUVERS M. Initial risk assessment for three beta-blockers found in the aquatic environment [J]. Chemosphere, 2005, 59(2): 199-205. doi: 10.1016/j.chemosphere.2004.11.090 [3] 彭祖华, 池剑, 孙立伟, 等. β-肾上腺受体阻滞剂的水生态毒理学研究进展 [J]. 生态毒理学报, 2013, 8(4): 494-503. doi: 10.7524/AJE.1673-5897.20120608001 PENG Z H, CHI J, SUN L W, et al. Current progress in the aquatic ecotoxicology of β-adrenergic receptor blockers [J]. Asian Journal of Ecotoxicology, 2013, 8(4): 494-503(in Chinese). doi: 10.7524/AJE.1673-5897.20120608001
[4] CANONICA S, MEUNIER L, VON GUNTEN U. Phototransformation of selected pharmaceuticals during UV treatment of drinking water [J]. Water Research, 2008, 42(1/2): 121-128. [5] XIANG Y Y, FANG J Y, SHANG C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process [J]. Water Research, 2016, 90: 301-308. doi: 10.1016/j.watres.2015.11.069 [6] WANG W L, WU Q Y, HUANG N, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species [J]. Water Research, 2016, 98: 190-198. doi: 10.1016/j.watres.2016.04.015 [7] LI J Q, ZHOU S Q, LI M, et al. Mechanism insight of acetaminophen degradation by the UV/chlorine process: Kinetics, intermediates, and toxicity assessment [J]. Environmental Science and Pollution Research, 2019, 26(24): 25012-25025. doi: 10.1007/s11356-019-05747-1 [8] 伊学农, 方佳男, 高玉琼, 等. 紫外线-氯联合高级氧化体系降解水中的萘普生 [J]. 环境工程学报, 2019, 13(5): 1030-1037. doi: 10.12030/j.cjee.201811102 YI X N, FANG J N, GAO Y Q, et al. Degradation of naproxen in water by UV/chlorine advanced oxidation process [J]. Chinese Journal of Environmental Engineering, 2019, 13(5): 1030-1037(in Chinese). doi: 10.12030/j.cjee.201811102
[9] RIVAS F J, GIMENO O, BORRALHO, et al. UV-C radiation based methods for aqueous metoprolol elimination [J]. Journal of Hazardous Materials, 2010, 179(1-3): 357-362. doi: 10.1016/j.jhazmat.2010.03.013 [10] ACERO J L, BENITEZ F J, REAL F J, et al. Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices [J]. Water Research, 2010, 44(14): 4158-4170. doi: 10.1016/j.watres.2010.05.012 [11] FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system [J]. Environmental Science & Technology, 2014, 48(3): 1859-1868. [12] WU Z H, FANG J Y, XIANG Y Y, et al. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways [J]. Water Research, 2016, 104: 272-282. doi: 10.1016/j.watres.2016.08.011 [13] WOLS B A, HARMSEN D J H, BEERENDONK E F, et al. Predicting pharmaceutical degradation by UV (LP)/H2O2 processes: A kinetic model [J]. Chemical Engineering Journal, 2014, 255: 334-343. doi: 10.1016/j.cej.2014.05.088 [14] ZHANG Y Q, ZHANG J F, XIAO Y J, et al. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate [J]. Chemical Engineering Journal, 2016, 302: 526-534. doi: 10.1016/j.cej.2016.05.085 [15] 赵刘柱, 吴敏, 朱延平, 等. 紫外—氯降解非那西丁影响因素及机理研究 [J]. 水处理技术, 2019, 45(3): 69-73,78. ZHAO L Z, WU M, ZHU Y P, et al. Influencing factors and mechanism of ultraviolet/chlorine degradation on phenacetin [J]. Technology of Water Treatment, 2019, 45(3): 69-73,78(in Chinese).
[16] DENG J, WU G X, YUAN S J, et al. Ciprofloxacin degradation in UV/chlorine advanced oxidation process: Influencing factors, mechanisms and degradation pathways [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 371: 151-158. doi: 10.1016/j.jphotochem.2018.10.043 [17] JIA X R, JIN J, GAO R, et al. Degradation of benzophenone-4 in a UV/chlorine disinfection process: Mechanism and toxicity evaluation [J]. Chemosphere, 2019, 222: 494-502. doi: 10.1016/j.chemosphere.2019.01.186 [18] RADJENOVIC J, ESCHER B I, BABAEY K. Electrochemical degradation of the β-blocker metoprolol by Ti/Ru0.7Ir0.3O2 and Ti/SnO2-Sb electrodes [J]. Water Research, 2011, 45: 3205-3214. doi: 10.1016/j.watres.2011.03.040 [19] ROMERO V, ACEVEDO S, MARCO P, et al. Enhancement of Fenton and photo-Fenton processes at initial circumneutral pH for the degradation of the β-blocker metoprolol [J]. Water Research, 2016, 88: 449-457. [20] TAY K S, RAHMAN N A, ABAS M R B. Ozonation of metoprolol in aqueous solution: Ozonation by-products and mechanisms of degradation [J]. Environmental Science and Pollution Research, 2013, 20(5): 3115-3121. doi: 10.1007/s11356-012-1223-3 [21] WILDE M L, MAHMOUD W M M, KUMMERER K, et al. Oxidation-coagulation of β-blockers by K2FeVIO4 in hospital wastewater: Assessment of degradation products and biodegradability [J]. Science of The Total Environment, 2013, 452-453: 137-147. doi: 10.1016/j.scitotenv.2013.01.059 [22] YANG Y, LU X L, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate [J]. Water Research, 2017, 118: 196-207. doi: 10.1016/j.watres.2017.03.054 [23] WANG J B, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode [J]. Water Research, 2018, 137: 324-334. doi: 10.1016/j.watres.2018.03.030