[1] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters [J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5
[2] LIU J, CHENG H F, ZHAO F H, et al. Effect of reactive bed mineralogy on arsenic retention and permeability of synthetic arsenic-containing acid mine drainage [J]. Journal of Colloid and Interface Science, 2013, 394: 530-538. doi: 10.1016/j.jcis.2012.12.014
[3] PAIKARAY S. Arsenic geochemistry of acid mine drainage [J]. Mine Water And the Environment, 2015, 34(2): 181-196. doi: 10.1007/s10230-014-0286-4
[4] PARK J H, HAN Y S, AHN J S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream [J]. Water Research, 2016, 106: 295-303. doi: 10.1016/j.watres.2016.10.006
[5] KINSELA A S, COLLINS R N, WAITE T D. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia [J]. Chemosphere, 2011, 82(6): 879-887. doi: 10.1016/j.chemosphere.2010.10.056
[6] 梁美娜, 刘海玲, 朱义年, 等. 复合铁铝氢氧化物的制备及其对水中砷(V)的去除 [J]. 环境科学学报, 2006,26(3): 438-446. doi: 10.3321/j.issn:0253-2468.2006.03.014 LIANG M N, LIU H L, ZHU Y N, et al. Removal of arsenate from water by using the synthetical iron-aluminum hydroxide complexes [J]. Acta Scientiae Circumstantiae, 2006,26(3): 438-446(in Chinese). doi: 10.3321/j.issn:0253-2468.2006.03.014
[7] DIXIT S, HERING J G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals:Implications for arsenic mobility [J]. Environ Sci Technol, 2003, 37(18): 4182-4189. doi: 10.1021/es030309t
[8] WAYCHUNAS G A, KIM C S, BANFIELD J F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms [J]. Journal Of Nanoparticle Research, 2005, 7(4/5): 409-433.
[9] RODOVA A, FILIP J, CERNIK M. Arsenic immobilization by nanoscale zero-valent iron [J]. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S, 2015, 22(1): 45-59.
[10] MORIN G, CALAS G. Arsenic in soils, mine tailings, and former industrial sites. [J]. Elements, 2006, 2(2): 97-101. doi: 10.2113/gselements.2.2.97
[11] OTERO-FARINA A, GAGO R, ANTELO J, et al. Surface complexation modelling of arsenic and copper immobilization by iron oxide precipitates derived from acid mine drainage [J]. Boletin De La Sociedad Geologica Mexicana, 2015, 67(3): 493-508. doi: 10.18268/BSGM2015v67n3a12
[12] PEREZ J P H, FREEMAN H M, SCHUESSLER J A, et al. The interfacial reactivity of arsenic species with green rust sulfate (GR(SO4)) [J]. Science Of the Total Environment, 2019, 648: 1161-1170. doi: 10.1016/j.scitotenv.2018.08.163
[13] OHNUKI T, SAKAMOTO F, KOZAI N, et al. Mechanisms of arsenic immobilization in a biomat from mine discharge water [J]. Chemical Geology, 2004, 212(3/4): 279-290.
[14] EGAL M, CASIOT C, MORIN G, et al. Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water [J]. Chemical Geology, 2009, 265(3/4): 432-441.
[15] GARCIA I, DIEZ M, MARTIN F, et al. Mobility of arsenic and heavy metals in a sandy-loam textured and carbonated soil [J]. Pedosphere, 2009, 19(2): 166-175. doi: 10.1016/S1002-0160(09)60106-5
[16] ASTA M P, CAMA J, MARTINEZ M, et al. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications [J]. Journal Of Hazardous Materials, 2009, 171(1/3): 965-972.
[17] ALARCON R, GAVIRIA J, DOLD B. Liberation of adsorbed and co-precipitated arsenic from jarosite, schwertmannite, ferrihydrite, and goethite in seawater [J]. Minerals, 2014, 4(3): 603-620. doi: 10.3390/min4030603
[18] RAGHAV M, SHAN J L, SAEZ A E, et al. Scoping candidate minerals for stabilization of arsenic-bearing solid residuals [J]. Journal of Hazardous Materials, 2013, 263: 525-532. doi: 10.1016/j.jhazmat.2013.10.009
[19] BIGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters [J]. Geochimica Et Cosmochimica Acta, 1990, 54(10): 2743-2758. doi: 10.1016/0016-7037(90)90009-A
[20] ZHANG Z, BI X, LI X T, et al. Schwertmannite: occurrence, properties, synthesis and application in environmental remediation [J]. RSC Advances, 2018, 8(59): 33583-33599. doi: 10.1039/C8RA06025H
[21] ASTA M P, AYORA C, ACERO P, et al. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain) [J]. Journal Of Hazardous Materials, 2010, 177(1/3): 1102-1111.
[22] WANG S L, WANG P, MEN B, et al. Chemical forms and ecological risk of arsenic in the sediment of the Daliao River System in China [J]. Environmental Monitoring And Assessment, 2012, 184(4): 2237-2245. doi: 10.1007/s10661-011-2113-8
[23] FUKUSHI K, SASAKI M, SATO T, et al. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump [J]. Applied Geochemistry, 2003, 18(8): 1267-1278. doi: 10.1016/S0883-2927(03)00011-8
[24] ASTA M P, AYORA C, ROMAN-ROSS G, et al. Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): The role of iron precipitates [J]. Chemical Geology, 2010, 271(1/2): 1-12.
[25] COURTIN-NOMADE A, GROSBOIS C, BRIL H, et al. Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage [J]. Applied Geochemistry, 2005, 20(2): 383-396. doi: 10.1016/j.apgeochem.2004.08.002
[26] SCHWERTMANN U, BIGHAM J M, MURAD E. The first occurrence of schwertmannite in a natural stream environment [J]. European Journal Of Mineralogy, 1995, 7(3): 547-552. doi: 10.1127/ejm/7/3/0547
[27] REGENSPURG S, BRAND A, PEIFFER S. Formation and stability of schwertmannite in acidic mining lakes [J]. Geochimica Et Cosmochimica Acta, 2004, 68(6): 1185-1197. doi: 10.1016/j.gca.2003.07.015
[28] FRENCH R A, CARABALLO M A, KIM B, et al. The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: Morphology, structure, and composition [J]. American Mineralogist, 2012, 97(8/9): 1469-1482.
[29] MURAD E, ROJIK P. Iron mineralogy of mine-drainage precipitates as environmental indicators:Review of current concepts and a case study from the Sokolov Basin, Czech Republic [J]. Clay Minerals, 2005, 40(4): 427-440. doi: 10.1180/0009855054040181
[30] LOAN M, RICHMOND W R, PARKINSON G M. On the crystal growth of nanoscale schwertmannite [J]. Journal of Crystal Growth, 2005, 275(1/2): e1875-e1881.
[31] FUKUSHI K, SATO T, YANASE N, et al. Arsenate sorption on schwertmannite [J]. American Mineralogist, 2004, 89(11/12): 1728-1734.
[32] FERNANDEZ-MARTINEZ A, TIMON V, ROMAN-ROSS G, et al. The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate [J]. American Mineralogist, 2010, 95(8/9): 1312-1322.
[33] REGENSPURG S, PEIFFER S. Arsenate and chromate incorporation in schwertmannite [J]. Applied Geochemistry, 2005, 20(6): 1226-1239. doi: 10.1016/j.apgeochem.2004.12.002
[34] TRESINTSI S, SIMEONIDIS K, PLIATSIKAS N, et al. The role of ${\rm{SO}}_4^{2-} $ surface distribution in arsenic removal by iron oxy-hydroxides [J]. Journal Of Solid State Chemistry, 2014, 213: 145-151. doi: 10.1016/j.jssc.2014.02.026
[35] BIGHAM J M, SCHWERTMANN U, PFAB G. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage [J]. Applied Geochemistry, 1996(6): 845-849.
[36] COLLINS R N, ROSSO K M, ROSE A L, et al. An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate [J]. Geochimica Et Cosmochimica Acta, 2016, 177: 150-169. doi: 10.1016/j.gca.2016.01.021
[37] WANG X, GU C, FENG X, et al. Sulfate local coordination environment in schwertmannite [J]. Environ Sci Technol, 2015, 49(17): 10440-10448. doi: 10.1021/acs.est.5b02660
[38] YING H, FENG X, ZHU M, et al. Formation and transformation of schwertmannite through direct Fe3+ hydrolysis under various geochemical conditions[J]. Environmental ence. Nano, 2020.
[39] PARVIAINEN A, CRUZ-HERNANDEZ P, PEREZ-LOPEZ R, et al. Raman identification of Fe precipitates and evaluation of As fate during phase transformation in Tinto and Odiel River Basins [J]. Chemical Geology, 2015, 398: 22-31. doi: 10.1016/j.chemgeo.2015.01.022
[40] BURTON E D, JOHNSTON S G, KRAAL P, et al. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite [J]. Environmental Science & Technology, 2013, 47(5): 2221-2229.
[41] BURTON E D, JOHNSTON S G, WATLING K, et al. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite [J]. Environmental Science & Technology, 2010, 44(6): 2016-2021.
[42] PAIKARAY S, PEIFFER S. Lepidocrocite formation kinetics from schwertmannite in Fe(II)-rich anoxic alkaline medium [J]. Mine Water And the Environment, 2015, 34(2): 213-222. doi: 10.1007/s10230-014-0309-1
[43] BURTON E D, JOHNSTON S G. Impact of silica on the reductive transformation of schwertmannite and the mobilization of arsenic [J]. Geochimica Et Cosmochimica Acta, 2012, 96: 134-153. doi: 10.1016/j.gca.2012.08.007
[44] 谢越, 周立祥. 酸性环境下生物成因施氏矿物稳定性研究 [J]. 地学前缘, 2011, 18(5): 310-318. XIE Y, ZHOU L X. Stability of biogenic schwertmannite in acidic solution [J]. Earth Science Frontiers, 2011, 18(5): 310-318(in Chinese).
[45] BARHAM, JOSEPH R. Schwertmannite: A unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basic iron sulfate [J]. Journal of Materials Research, 1997, 12(10): 2751-2758. doi: 10.1557/JMR.1997.0366
[46] JOHNSTON S G, BURTON E D, MOON E M. Arsenic mobilization is enhanced by thermal transformation of schwertmannite [J]. Environmental Science & Technology, 2016, 50(15): 8010-8019.
[47] HOUNGALOUNE S, KAWAAI T, HIROYOSHI N, et al. Study on schwertmannite production from copper heap leach solutions and its efficiency in arsenic removal from acidic sulfate solutions [J]. Hydrometallurgy, 2014, 147: 30-40.
[48] HOUNGALOUNE S, HIROYOSHI N, ITO M. Stability of As(V)-sorbed schwertmannite under porphyry copper mine conditions [J]. Minerals Engineering, 2015, 74: 51-59. doi: 10.1016/j.mineng.2015.01.003
[49] CRUZ-HERNANDEZ P, PEREZ-LOPEZ R, NIETO J M. Role of arsenic during the aging of acid mine drainage precipitates [J]. Procedia Earth and Planetary Science, 2017, 17: 233-236. doi: 10.1016/j.proeps.2016.12.079
[50] JONES A M, COLLINS R N, ROSE J, et al. The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals [J]. Geochimica Et Cosmochimica Acta, 2009, 73(15): 4409-4422. doi: 10.1016/j.gca.2009.04.025
[51] BATTAGLIA-BRUNET F, DICTOR M C, GARRIDO F, et al. An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors [J]. J Appl Microbiol, 2002, 93(4): 656-667. doi: 10.1046/j.1365-2672.2002.01726.x
[52] BURTON E D, BUSH R T, JOHNSTON S G, et al. Sorption of arsenic(V) and arsenic(III) to schwertmannite [J]. Environmental Science & Technology, 2009, 43(24): 9202-9207.
[53] PAIKARAY S, GOTTLICHER J, PEIFFER S. Removal of As(III) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway [J]. Chemical Geology, 2011, 283(3/4): 134-142.
[54] SONG J, JIA S Y, REN H T, et al. Application of a high-surface-area schwertmannite in the removal of arsenate and arsenite [J]. International Journal Of Environmental Science And Technology, 2015, 12(5): 1559-1568. doi: 10.1007/s13762-014-0528-9
[55] MAILLOT F, MORIN G, JUILLOT F, et al. Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoules acid mine drainage, France: Comparison with biotic and abiotic model compounds and implications for As remediation [J]. Geochimica Et Cosmochimica Acta, 2013, 104: 310-329. doi: 10.1016/j.gca.2012.11.016
[56] MORIN G, JUILLOT F, CASIOT C, et al. Bacterial formation of tooeleite and mixed Arsenic(III) or Arsenic(V)-Iron(III) gels in the carnoulbs acid mine drainage, France. A XANES, XRD, and SEM study [J]. Environmental Science & Technology, 2003, 37(9): 1705-1712.
[57] CARLSON L, BIGHAM J M, SCHWERTMANN U, et al. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues [J]. Environ Sci Technol, 2002, 36(8): 1712-1719. doi: 10.1021/es0110271
[58] PAIKARAY S, PEIFFER S. Biotic and abiotic schwertmannites as scavengers for As(III): Mechanisms and effects [J]. Water Air And Soil Pollution, 2012, 223(6): 2933-2942. doi: 10.1007/s11270-012-1077-9
[59] LIU F W, ZHOU J, ZHANG S S, et al. Schwertmannite synthesis through ferrous ion chemical oxidation under different H2O2 supply rates and its removal efficiency for arsenic from contaminated groundwater [J]. PLoS One, 2015, 10(9): 14.
[60] HAN X, LI Y L, GU J D. Oxidation of As(III) by MnO2 in the absence and presence of Fe(II) under acidic conditions [J]. Geochimica Et Cosmochimica Acta, 2011, 75(2): 368-379. doi: 10.1016/j.gca.2010.10.010
[61] SUN H, ZHAO F, WU S. Improvement of synthesizing methods and characterization of Schwertmannite [J]. Acta Petrologica et Mineralogica, 2013, 32(6): 1006-1012.
[62] MORI J F, LU S, HANDEL M, et al. Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix [J]. Microbiology, 2016, 162(1): 62-71. doi: 10.1099/mic.0.000205
[63] LIAO Y H, LIANG J R, ZHOU L X. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater [J]. Chemosphere, 2011, 83(3): 295-301. doi: 10.1016/j.chemosphere.2010.12.060
[64] DUQUESNE K, LEBRUN S, CASIOT C, et al. Immobilization of arsenite and ferric iron by acidithiobacillus ferrooxidans and its relevance to acid mine drainage [J]. Applied And Environmental Microbiology, 2003, 69(10): 6165-6173. doi: 10.1128/AEM.69.10.6165-6173.2003
[65] XU Y Q, YANG M, YAO T, et al. Isolation, identification and arsenic-resistance of acidithiobacillus ferrooxidans HX3 producing schwertmannite [J]. Journal Of Environmental Sciences, 2014, 26(7): 1463-1470. doi: 10.1016/j.jes.2014.05.012
[66] 李浙英. 化学与生物成因施氏矿物的矿物学特征及其对水中As(III)吸附去除效果的研究[D]. 南京: 南京农业大学, 2010. LI Z Y. Synthesis and pre-treated of Schwertmannite and its efficiency of arsenic removal from simulated[D]. Nanjing Agricultural University, 2010(in Chinese).
[67] DOU X, MOHAN D, PITTMAN C U, JR. Arsenate adsorption on three types of granular schwertmannite [J]. Water Res, 2013, 47(9): 2938-2948. doi: 10.1016/j.watres.2013.01.035
[68] QIAO X X, LIU L L, SHI J, et al. Heating changes bio-schwertmannite microstructure and arsenic(Ⅲ) removal efficiency [J]. Minerals, 2017, 7(1): 14. doi: 10.3390/min7010014
[69] PAIKARAY S, ESSILFIE-DUGHAN J, GOTTLICHER J, et al. Redox stability of As(Ⅲ) on schwertmannite surfaces [J]. Journal of Hazardous Materials, 2014, 265: 208-216. doi: 10.1016/j.jhazmat.2013.11.068
[70] ANTELO J, FIOL S, GONDAR D, et al. Comparison of arsenate, chromate and molybdate binding on schwertmannite: surface adsorption vs anion-exchange [J]. J Colloid Interface Sci, 2012, 386(1): 338-343. doi: 10.1016/j.jcis.2012.07.008
[71] FUKUSHI K, SATO T, YANASE N. Solid-solution reactions in As(Ⅴ) sorption by schwertmannite [J]. Environ Sci Technol, 2003, 37(16): 3581-3586. doi: 10.1021/es026427i
[72] VITHANA C L, SULLIVAN L A, BURTON E D, et al. Liberation of acidity and arsenic from schwertmannite: Effect of fulvic acid [J]. Chemical Geology, 2014, 372: 1-11. doi: 10.1016/j.chemgeo.2014.02.012
[73] BURTON E D, BUSH R T, SULLIVAN L A, et al. Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil [J]. Chemical Geology, 2008, 253(1/2): 64-73.
[74] ZHANG J, LI Y X, LI W, et al. The synergistic trigger of the reductive dissolution of Schwertmannite-As(Ⅲ) and the release of arsenic from citric acid and UV irradiation [J]. Chemical Geology, 2019, 520: 11-20. doi: 10.1016/j.chemgeo.2019.05.004
[75] ZHANG J, LI W, LI Y, et al. Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(Ⅲ) and the release of adsorbed As(III) [J]. Environmental Pollution, 2019, 245: 711-718. doi: 10.1016/j.envpol.2018.11.047
[76] JOHNSTON S G, BENNETT W W, BURTON E D, et al. Rapid arsenic(Ⅴ)-reduction by fire in schwertmannite-rich soil enhances arsenic mobilisation [J]. Geochimica Et Cosmochimica Acta, 2018, 227: 1-18. doi: 10.1016/j.gca.2018.01.031
[77] FAN C, GUO C L, ZENG Y F, et al. The behavior of chromium and arsenic associated with redox transformation of schwertmannite in AMD environment [J]. Chemosphere, 2019, 222: 945-953. doi: 10.1016/j.chemosphere.2019.01.142
[78] TRESINTSI S, SIMEONIDIS K, VOURLIAS G, et al. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: Study of Fe(Ⅱ) oxidation-precipitation parameters [J]. Water Research, 2012, 46(16): 5255-5267. doi: 10.1016/j.watres.2012.06.049
[79] FERNANDEZ-ROJO L, HERY M, LE PAPE P, et al. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD) [J]. Water Research, 2017, 123: 594-606. doi: 10.1016/j.watres.2017.06.059
[80] XIE Y, ZHOU L X. Arsenite Removal from Simulated Groundwater by Biogenic Schwertmannite: A Column Trial [J]. Pedosphere, 2013, 23(3): 402-408. doi: 10.1016/S1002-0160(13)60032-6
[81] ZHANG J, SHI J, ZHANG S, et al. Schwertmannite Adherence to the Reactor Wall during the Bio-Synthesis Process and Deterioration of Its Structural Characteristics and Arsenic(III) Removal Efficiency [J]. Minerals, 2017, 7(4): 13.
[82] JANNECK E, ARNOLD I, KOCH T, et al. Microbial synthesis of schwertmannite from lignite mine water and its utilization for removal of arsenic from mine waters and for production of iron pigments[C]. International Mine Water Association Symposium – Mine Water and Innovative Thinking. 2010.
[83] YANG Z H, WU Z J, LIAO Y P, et al. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic contaminated soil [J]. Chemosphere, 2017, 181: 1-8. doi: 10.1016/j.chemosphere.2017.04.041
[84] CHAI L Y, TANG J W, LIAO Y P, et al. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans and its application in arsenic immobilization in the contaminated soil [J]. Journal of Soils And Sediments, 2016, 16(10): 2430-2438. doi: 10.1007/s11368-016-1449-7
[85] DEY A, SINGH R, PURKAIT M K. Cobalt ferrite nanoparticles aggregated schwertmannite: A novel adsorbent for the efficient removal of arsenic [J]. Journal of Water Process Engineering, 2014, 3: 1-9. doi: 10.1016/j.jwpe.2014.07.002
[86] 李旭伟, 贺静, 张健, 等. 透析对施氏矿物微观结构及其砷吸附能力的影响 [J]. 环境科学学报, 2020, 40(2): 546-553. LI X W, HE J, ZHANG J, et al. Effects of dialysis on the microstructure of schwertmannite and its arsenic removal ability [J]. Acta Scientiae Circumstantiae, 2020, 40(2): 546-553(in Chinese).
[87] PASCUA C S, MINATO M, YOKOYAMA S, et al. Uptake of dissolved arsenic during the retrieval of silica from spent geothermal brine [J]. Geothermics, 2007, 36(3): 230-242. doi: 10.1016/j.geothermics.2007.03.001
[88] IKEDA H, ITO K, SATO T. Composite material for purifying polluted water, contains fibrous raw material and schwertmannite compound in which one portion of sulfate ion is substituted by anion as such as arsenate ion, phosphate ion or silicate ion: Japan, JP2009136795-A[P]. 2009
[89] OKIDO M, BANDO Y, ESKANDARPOUR A, et al. Magnetic chemical absorber used in waste-liquid processing, comprises composite comprising nuclear material consisting of magnetite fine particles, and schwertmannite precipitated around and chemically bonded with nuclear material: WO2008023853-A1[P].2008