-
砷(As)是一种具有致癌性的重金属元素,自然界与人为产生的砷都造成了环境中砷的聚集,对水体与土壤造成污染,进而对人体造成危害。过往研究表明,无机砷特别是三价砷As(Ⅲ),比五价砷As(Ⅴ)毒性更大,已经被证明是最致癌的物质[1] 。砷污染是目前最普遍的环境问题之一,主要由含砷硫化物氧化形成的酸性矿井水(AMD)引起[2] ,其pH值一般为3或者更低。在中国,高砷土壤主要与采矿活动有关。含砷矿物的氧化溶解,如砷黄铁矿(FeS2 -As)、毒砂(FeAsS)、雄黄(As4S4)、雌黄(As2S3)、钴酸盐(CoAsS),以及它们在多金属矿床和煤层中的副相是矿井水砷的主要来源[3]。富砷硫化物的氧化、富砷铁(氢)氧化物的还原溶解以及铁(氢)氧化物的解吸作用导致地下水砷聚集。
在自然界中,砷通常以无机含氧阴离子形式存在,低pH值环境中以五价砷酸盐H2AsO4−形式、在偏碱性环境中以三价亚砷酸盐H3AsO40形式存在[1],但后者仍然可以大量存在于氧化环境中。在大多数矿井水系中,砷酸盐和亚砷酸盐能够并存于AMD,但长期暴露于大气氧和三价铁矿物表面往往导致砷酸盐物种占优势[3]。比如韩国Ilkwang矿井水中[4],沉淀物矿相中砷以As(Ⅴ)的形式存在。Kinsela等[5]研究了澳大利亚东部以酸性硫酸盐土为主的集水区中砷的存在,发现固态砷几乎只以五价态形式存在于次生三价铁矿物中。
目前常用的含砷废水处理方法可概括为吸附法、化学沉淀法、离子交换法。吸附法是通过物理吸附或化学吸附将污染水中的砷转移到特殊的固体吸附剂中,可用的吸附剂有活性炭、活性铝、黏土、复合铁铝化合物[6]等,各类吸附剂效果不一。化学沉淀法是采用沉淀剂对污染水中的砷进行沉淀过滤,以达到去除的目的,常用的沉淀剂有钙、铁、镁、铝盐以及硫化物等。离子交换法通过离子交换剂中的交换基团与污染水中的有毒阴离子进行交换,进而去除废水中的污染物离子。以上处理方法可以结合使用,其关键在于环境修复材料的选择,不同材料处理效果不一,如Liu等[2]在140 d的柱状实验中用铁尘、泥晶、骨炭及其混合物处理合成含砷AMD,证明3种介质的除砷能力分别为骨炭>泥晶>铁屑。
吸附法操作简便、价格相对低廉,越来越受到众多科学家的重视,是研究应用最多的除砷方法之一。As(Ⅴ)大多存在于氧化环境下,由于其带电性质,很容易发生固相吸附,特别是对铁氧化物、氢化物、羟化物(针铁矿、水铁矿)和羟基硫酸盐(施威特曼石、黄钾铁矾)有较强的被吸附作用[7].
针铁矿、四方针铁矿、赤铁矿、水铁矿和施威特曼石(简称施氏矿物)是土壤、沉积物中的重要组成部分,这些铁矿物对金属和阴离子污染物如砷、铬、铅、汞和硒都有很强的吸附能力[8]。环境中的亚铁离子Fe2+被氧化后,形成的氧化铁氢氧化物(黄钾铁矾、针铁矿、施氏矿物、水铁矿等)能够在其结构中吸收砷或将其吸附在表面,对砷的迁移与修复过程都具有重要的影响。Rodova 等[9]证明0.5 g·dm−3的纳米级零价铁对污染水中的砷有良好的去除作用,单质铁氧化产生氢氧化物时,使As以混合配合物的形式也进入产物结构,从而将溶解的砷从溶液中除去并结合。在被污染的土壤、酸性矿井排水系统、热泉中都发现了砷被固定在含铁矿物中的现象[10]。Farina等[11]在废弃的钨矿和锡矿附近的河岸上收集到受AMD影响的富铁沉淀物,发现其中含有不同比例的施氏矿物、针铁矿和水铁矿颗粒的混合物.
历年来不少研究者对这类潜在的重金属砷吸附材料进行了研究。Perez等[12]进行实验后提出,在缺氧条件下,绿锈GRSO4是去除As(Ⅲ)和As(Ⅴ)的稳定有效的高效吸附剂,并且吸附效率高度依赖pH值,在pH 8—9时对As(Ⅲ)的吸附达到最大值,pH 7时对As(Ⅴ)的吸附达到最大值。Ohnuki等[13]通过对日本群马县一个废弃酸性矿井的污染物排水进行实验,研究了pH 4.7时在一个细菌小环境(生物膜)下对砷的吸收机制,发现由于亚铁离子在生物膜上被氧化形成铁矿物,砷、铁在生物膜上聚集,砷的主要提取机制是砷被吸附在铁硫矿物上或与之共沉淀。Egal等[14]研究了酸性氧化亚铁硫杆菌菌株对富砷酸性矿井排水中次生铁矿物形成的作用,发现在微生物的作用下,形成了施氏矿物、黄钾铁矾、tooeleite等与亚砷酸盐共沉淀。在西班牙南部一项对沙壤和碳酸盐土中污染物离子的研究中发现,砷酸盐在土壤中的保留与铁羟基硫酸盐(黄钾铁矾、施威特曼石)和氧羟化物(针铁矿、水铁矿)的形成有关[15] 。
在众多次生铁矿物中,施氏矿物受到了广泛的关注。施氏矿物结构类似于水铁矿,近30年来对于施氏矿物的研究颇多,众多研究都证明其对砷有着优秀的吸附能力。在高酸性环境且没有其他阴离子竞争作用的情况下,针铁矿和黄钾铁矾对As(Ⅴ)的吸附能力大大低于施氏矿物[16]。水铁矿、针铁矿、施氏矿物和黄钾铁矾在海水中都体现出除砷能力,但在实验条件下,施氏矿物由于酸化海水的缓冲作用释放砷的可能性较小,而针铁矿和黄钾铁矾则出现强烈的砷释放现象,这说明该条件下施氏矿物对砷有更好的固定作用[17]。Raghav等[18]利用砷结晶技术,用臭葱石、砷酸羟磷灰石、砷酸亚铁、陨硫铁、砷酸盐施威特曼石处理含砷固体残渣,发现施氏矿物与砷酸亚铁对砷的固定作用最好。
同时由于施氏矿物的不稳定性,在许多受酸性矿井排水污染的河流中,上游的铁沉积物是施氏矿物,而下游则转化为黄钾铁矾或针铁矿等其他铁矿物,这一转化过程中也可能会造成砷的释放,因此砷的迁移与铁矿物尤其是施氏矿物具有强相关性。施氏矿物作为一种优秀的砷吸附材料受到广泛关注,但该矿物对砷的吸附受到砷形态、pH值、温度等多方因素的影响,在探索富施氏矿物体系中的砷迁移、讨论施氏矿物作为砷污染修复材料的可行性时,研究施氏矿物对砷的吸附机制与效果是一项重要的课题。然而目前缺乏关于施氏矿物对砷的吸附研究的综述。故本文结合国内外研究进展,对施氏矿物的发现、矿物学特征及其与砷的相互作用做了系统性的介绍。
施氏矿物的矿物学特征及其除砷研究进展
The mineralogical characteristics of schwertmannite and its progress in arsenic removal
-
摘要: 砷污染是全世界突出的环境问题,对污染水中砷的吸附处理受到广泛关注。施氏矿物凭借其优异的吸附性能与简便经济的制备方法,被认为是一种具有重大潜力的除砷材料。本文概述了施氏矿物的发现及其矿物学特征,重点介绍了施氏矿物对砷的去除效果及其影响因素,并分析了施氏矿物的除砷机理及砷的再释放性,同时对施氏矿物的应用研究进行了总结,最后提出了施氏矿物除砷研究中存在的问题及展望。Abstract: Arsenic pollution is a serious environmental problem all over the world and the adsorption treatment of arsenic in contaminated water has attracted wide attention. Because of its excellent adsorption property and simple and economical preparation method, schwertmannite was considered as an arsenic removal material with great potential. In this paper, a review was presented on the discovery and mineralogical characteristics of schwertmannite as well as the removal effect and influencing factors of arsenic by schwertmannite. The mechanism of arsenic removal and arsenic rerelease of schwetmannite were analyzed and the application research of schwertmannite was summarized. At last, the problems and prospects in the study of arsenic removal were put forward.
-
图 1 施氏矿物的化学组成(A)与结构(B)示意图[20]
Figure 1. Chemical (A) and channel (B) structure of schwertmannite
-
[1] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters [J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5 [2] LIU J, CHENG H F, ZHAO F H, et al. Effect of reactive bed mineralogy on arsenic retention and permeability of synthetic arsenic-containing acid mine drainage [J]. Journal of Colloid and Interface Science, 2013, 394: 530-538. doi: 10.1016/j.jcis.2012.12.014 [3] PAIKARAY S. Arsenic geochemistry of acid mine drainage [J]. Mine Water And the Environment, 2015, 34(2): 181-196. doi: 10.1007/s10230-014-0286-4 [4] PARK J H, HAN Y S, AHN J S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream [J]. Water Research, 2016, 106: 295-303. doi: 10.1016/j.watres.2016.10.006 [5] KINSELA A S, COLLINS R N, WAITE T D. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia [J]. Chemosphere, 2011, 82(6): 879-887. doi: 10.1016/j.chemosphere.2010.10.056 [6] 梁美娜, 刘海玲, 朱义年, 等. 复合铁铝氢氧化物的制备及其对水中砷(V)的去除 [J]. 环境科学学报, 2006,26(3): 438-446. doi: 10.3321/j.issn:0253-2468.2006.03.014 LIANG M N, LIU H L, ZHU Y N, et al. Removal of arsenate from water by using the synthetical iron-aluminum hydroxide complexes [J]. Acta Scientiae Circumstantiae, 2006,26(3): 438-446(in Chinese). doi: 10.3321/j.issn:0253-2468.2006.03.014
[7] DIXIT S, HERING J G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals:Implications for arsenic mobility [J]. Environ Sci Technol, 2003, 37(18): 4182-4189. doi: 10.1021/es030309t [8] WAYCHUNAS G A, KIM C S, BANFIELD J F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms [J]. Journal Of Nanoparticle Research, 2005, 7(4/5): 409-433. [9] RODOVA A, FILIP J, CERNIK M. Arsenic immobilization by nanoscale zero-valent iron [J]. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S, 2015, 22(1): 45-59. [10] MORIN G, CALAS G. Arsenic in soils, mine tailings, and former industrial sites. [J]. Elements, 2006, 2(2): 97-101. doi: 10.2113/gselements.2.2.97 [11] OTERO-FARINA A, GAGO R, ANTELO J, et al. Surface complexation modelling of arsenic and copper immobilization by iron oxide precipitates derived from acid mine drainage [J]. Boletin De La Sociedad Geologica Mexicana, 2015, 67(3): 493-508. doi: 10.18268/BSGM2015v67n3a12 [12] PEREZ J P H, FREEMAN H M, SCHUESSLER J A, et al. The interfacial reactivity of arsenic species with green rust sulfate (GR(SO4)) [J]. Science Of the Total Environment, 2019, 648: 1161-1170. doi: 10.1016/j.scitotenv.2018.08.163 [13] OHNUKI T, SAKAMOTO F, KOZAI N, et al. Mechanisms of arsenic immobilization in a biomat from mine discharge water [J]. Chemical Geology, 2004, 212(3/4): 279-290. [14] EGAL M, CASIOT C, MORIN G, et al. Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water [J]. Chemical Geology, 2009, 265(3/4): 432-441. [15] GARCIA I, DIEZ M, MARTIN F, et al. Mobility of arsenic and heavy metals in a sandy-loam textured and carbonated soil [J]. Pedosphere, 2009, 19(2): 166-175. doi: 10.1016/S1002-0160(09)60106-5 [16] ASTA M P, CAMA J, MARTINEZ M, et al. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications [J]. Journal Of Hazardous Materials, 2009, 171(1/3): 965-972. [17] ALARCON R, GAVIRIA J, DOLD B. Liberation of adsorbed and co-precipitated arsenic from jarosite, schwertmannite, ferrihydrite, and goethite in seawater [J]. Minerals, 2014, 4(3): 603-620. doi: 10.3390/min4030603 [18] RAGHAV M, SHAN J L, SAEZ A E, et al. Scoping candidate minerals for stabilization of arsenic-bearing solid residuals [J]. Journal of Hazardous Materials, 2013, 263: 525-532. doi: 10.1016/j.jhazmat.2013.10.009 [19] BIGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters [J]. Geochimica Et Cosmochimica Acta, 1990, 54(10): 2743-2758. doi: 10.1016/0016-7037(90)90009-A [20] ZHANG Z, BI X, LI X T, et al. Schwertmannite: occurrence, properties, synthesis and application in environmental remediation [J]. RSC Advances, 2018, 8(59): 33583-33599. doi: 10.1039/C8RA06025H [21] ASTA M P, AYORA C, ACERO P, et al. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain) [J]. Journal Of Hazardous Materials, 2010, 177(1/3): 1102-1111. [22] WANG S L, WANG P, MEN B, et al. Chemical forms and ecological risk of arsenic in the sediment of the Daliao River System in China [J]. Environmental Monitoring And Assessment, 2012, 184(4): 2237-2245. doi: 10.1007/s10661-011-2113-8 [23] FUKUSHI K, SASAKI M, SATO T, et al. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump [J]. Applied Geochemistry, 2003, 18(8): 1267-1278. doi: 10.1016/S0883-2927(03)00011-8 [24] ASTA M P, AYORA C, ROMAN-ROSS G, et al. Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): The role of iron precipitates [J]. Chemical Geology, 2010, 271(1/2): 1-12. [25] COURTIN-NOMADE A, GROSBOIS C, BRIL H, et al. Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage [J]. Applied Geochemistry, 2005, 20(2): 383-396. doi: 10.1016/j.apgeochem.2004.08.002 [26] SCHWERTMANN U, BIGHAM J M, MURAD E. The first occurrence of schwertmannite in a natural stream environment [J]. European Journal Of Mineralogy, 1995, 7(3): 547-552. doi: 10.1127/ejm/7/3/0547 [27] REGENSPURG S, BRAND A, PEIFFER S. Formation and stability of schwertmannite in acidic mining lakes [J]. Geochimica Et Cosmochimica Acta, 2004, 68(6): 1185-1197. doi: 10.1016/j.gca.2003.07.015 [28] FRENCH R A, CARABALLO M A, KIM B, et al. The enigmatic iron oxyhydroxysulfate nanomineral schwertmannite: Morphology, structure, and composition [J]. American Mineralogist, 2012, 97(8/9): 1469-1482. [29] MURAD E, ROJIK P. Iron mineralogy of mine-drainage precipitates as environmental indicators:Review of current concepts and a case study from the Sokolov Basin, Czech Republic [J]. Clay Minerals, 2005, 40(4): 427-440. doi: 10.1180/0009855054040181 [30] LOAN M, RICHMOND W R, PARKINSON G M. On the crystal growth of nanoscale schwertmannite [J]. Journal of Crystal Growth, 2005, 275(1/2): e1875-e1881. [31] FUKUSHI K, SATO T, YANASE N, et al. Arsenate sorption on schwertmannite [J]. American Mineralogist, 2004, 89(11/12): 1728-1734. [32] FERNANDEZ-MARTINEZ A, TIMON V, ROMAN-ROSS G, et al. The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate [J]. American Mineralogist, 2010, 95(8/9): 1312-1322. [33] REGENSPURG S, PEIFFER S. Arsenate and chromate incorporation in schwertmannite [J]. Applied Geochemistry, 2005, 20(6): 1226-1239. doi: 10.1016/j.apgeochem.2004.12.002 [34] TRESINTSI S, SIMEONIDIS K, PLIATSIKAS N, et al. The role of ${\rm{SO}}_4^{2-} $ surface distribution in arsenic removal by iron oxy-hydroxides [J]. Journal Of Solid State Chemistry, 2014, 213: 145-151. doi: 10.1016/j.jssc.2014.02.026[35] BIGHAM J M, SCHWERTMANN U, PFAB G. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage [J]. Applied Geochemistry, 1996(6): 845-849. [36] COLLINS R N, ROSSO K M, ROSE A L, et al. An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate [J]. Geochimica Et Cosmochimica Acta, 2016, 177: 150-169. doi: 10.1016/j.gca.2016.01.021 [37] WANG X, GU C, FENG X, et al. Sulfate local coordination environment in schwertmannite [J]. Environ Sci Technol, 2015, 49(17): 10440-10448. doi: 10.1021/acs.est.5b02660 [38] YING H, FENG X, ZHU M, et al. Formation and transformation of schwertmannite through direct Fe3+ hydrolysis under various geochemical conditions[J]. Environmental ence. Nano, 2020. [39] PARVIAINEN A, CRUZ-HERNANDEZ P, PEREZ-LOPEZ R, et al. Raman identification of Fe precipitates and evaluation of As fate during phase transformation in Tinto and Odiel River Basins [J]. Chemical Geology, 2015, 398: 22-31. doi: 10.1016/j.chemgeo.2015.01.022 [40] BURTON E D, JOHNSTON S G, KRAAL P, et al. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite [J]. Environmental Science & Technology, 2013, 47(5): 2221-2229. [41] BURTON E D, JOHNSTON S G, WATLING K, et al. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite [J]. Environmental Science & Technology, 2010, 44(6): 2016-2021. [42] PAIKARAY S, PEIFFER S. Lepidocrocite formation kinetics from schwertmannite in Fe(II)-rich anoxic alkaline medium [J]. Mine Water And the Environment, 2015, 34(2): 213-222. doi: 10.1007/s10230-014-0309-1 [43] BURTON E D, JOHNSTON S G. Impact of silica on the reductive transformation of schwertmannite and the mobilization of arsenic [J]. Geochimica Et Cosmochimica Acta, 2012, 96: 134-153. doi: 10.1016/j.gca.2012.08.007 [44] 谢越, 周立祥. 酸性环境下生物成因施氏矿物稳定性研究 [J]. 地学前缘, 2011, 18(5): 310-318. XIE Y, ZHOU L X. Stability of biogenic schwertmannite in acidic solution [J]. Earth Science Frontiers, 2011, 18(5): 310-318(in Chinese).
[45] BARHAM, JOSEPH R. Schwertmannite: A unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basic iron sulfate [J]. Journal of Materials Research, 1997, 12(10): 2751-2758. doi: 10.1557/JMR.1997.0366 [46] JOHNSTON S G, BURTON E D, MOON E M. Arsenic mobilization is enhanced by thermal transformation of schwertmannite [J]. Environmental Science & Technology, 2016, 50(15): 8010-8019. [47] HOUNGALOUNE S, KAWAAI T, HIROYOSHI N, et al. Study on schwertmannite production from copper heap leach solutions and its efficiency in arsenic removal from acidic sulfate solutions [J]. Hydrometallurgy, 2014, 147: 30-40. [48] HOUNGALOUNE S, HIROYOSHI N, ITO M. Stability of As(V)-sorbed schwertmannite under porphyry copper mine conditions [J]. Minerals Engineering, 2015, 74: 51-59. doi: 10.1016/j.mineng.2015.01.003 [49] CRUZ-HERNANDEZ P, PEREZ-LOPEZ R, NIETO J M. Role of arsenic during the aging of acid mine drainage precipitates [J]. Procedia Earth and Planetary Science, 2017, 17: 233-236. doi: 10.1016/j.proeps.2016.12.079 [50] JONES A M, COLLINS R N, ROSE J, et al. The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals [J]. Geochimica Et Cosmochimica Acta, 2009, 73(15): 4409-4422. doi: 10.1016/j.gca.2009.04.025 [51] BATTAGLIA-BRUNET F, DICTOR M C, GARRIDO F, et al. An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors [J]. J Appl Microbiol, 2002, 93(4): 656-667. doi: 10.1046/j.1365-2672.2002.01726.x [52] BURTON E D, BUSH R T, JOHNSTON S G, et al. Sorption of arsenic(V) and arsenic(III) to schwertmannite [J]. Environmental Science & Technology, 2009, 43(24): 9202-9207. [53] PAIKARAY S, GOTTLICHER J, PEIFFER S. Removal of As(III) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway [J]. Chemical Geology, 2011, 283(3/4): 134-142. [54] SONG J, JIA S Y, REN H T, et al. Application of a high-surface-area schwertmannite in the removal of arsenate and arsenite [J]. International Journal Of Environmental Science And Technology, 2015, 12(5): 1559-1568. doi: 10.1007/s13762-014-0528-9 [55] MAILLOT F, MORIN G, JUILLOT F, et al. Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoules acid mine drainage, France: Comparison with biotic and abiotic model compounds and implications for As remediation [J]. Geochimica Et Cosmochimica Acta, 2013, 104: 310-329. doi: 10.1016/j.gca.2012.11.016 [56] MORIN G, JUILLOT F, CASIOT C, et al. Bacterial formation of tooeleite and mixed Arsenic(III) or Arsenic(V)-Iron(III) gels in the carnoulbs acid mine drainage, France. A XANES, XRD, and SEM study [J]. Environmental Science & Technology, 2003, 37(9): 1705-1712. [57] CARLSON L, BIGHAM J M, SCHWERTMANN U, et al. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues [J]. Environ Sci Technol, 2002, 36(8): 1712-1719. doi: 10.1021/es0110271 [58] PAIKARAY S, PEIFFER S. Biotic and abiotic schwertmannites as scavengers for As(III): Mechanisms and effects [J]. Water Air And Soil Pollution, 2012, 223(6): 2933-2942. doi: 10.1007/s11270-012-1077-9 [59] LIU F W, ZHOU J, ZHANG S S, et al. Schwertmannite synthesis through ferrous ion chemical oxidation under different H2O2 supply rates and its removal efficiency for arsenic from contaminated groundwater [J]. PLoS One, 2015, 10(9): 14. [60] HAN X, LI Y L, GU J D. Oxidation of As(III) by MnO2 in the absence and presence of Fe(II) under acidic conditions [J]. Geochimica Et Cosmochimica Acta, 2011, 75(2): 368-379. doi: 10.1016/j.gca.2010.10.010 [61] SUN H, ZHAO F, WU S. Improvement of synthesizing methods and characterization of Schwertmannite [J]. Acta Petrologica et Mineralogica, 2013, 32(6): 1006-1012. [62] MORI J F, LU S, HANDEL M, et al. Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix [J]. Microbiology, 2016, 162(1): 62-71. doi: 10.1099/mic.0.000205 [63] LIAO Y H, LIANG J R, ZHOU L X. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater [J]. Chemosphere, 2011, 83(3): 295-301. doi: 10.1016/j.chemosphere.2010.12.060 [64] DUQUESNE K, LEBRUN S, CASIOT C, et al. Immobilization of arsenite and ferric iron by acidithiobacillus ferrooxidans and its relevance to acid mine drainage [J]. Applied And Environmental Microbiology, 2003, 69(10): 6165-6173. doi: 10.1128/AEM.69.10.6165-6173.2003 [65] XU Y Q, YANG M, YAO T, et al. Isolation, identification and arsenic-resistance of acidithiobacillus ferrooxidans HX3 producing schwertmannite [J]. Journal Of Environmental Sciences, 2014, 26(7): 1463-1470. doi: 10.1016/j.jes.2014.05.012 [66] 李浙英. 化学与生物成因施氏矿物的矿物学特征及其对水中As(III)吸附去除效果的研究[D]. 南京: 南京农业大学, 2010. LI Z Y. Synthesis and pre-treated of Schwertmannite and its efficiency of arsenic removal from simulated[D]. Nanjing Agricultural University, 2010(in Chinese).
[67] DOU X, MOHAN D, PITTMAN C U, JR. Arsenate adsorption on three types of granular schwertmannite [J]. Water Res, 2013, 47(9): 2938-2948. doi: 10.1016/j.watres.2013.01.035 [68] QIAO X X, LIU L L, SHI J, et al. Heating changes bio-schwertmannite microstructure and arsenic(Ⅲ) removal efficiency [J]. Minerals, 2017, 7(1): 14. doi: 10.3390/min7010014 [69] PAIKARAY S, ESSILFIE-DUGHAN J, GOTTLICHER J, et al. Redox stability of As(Ⅲ) on schwertmannite surfaces [J]. Journal of Hazardous Materials, 2014, 265: 208-216. doi: 10.1016/j.jhazmat.2013.11.068 [70] ANTELO J, FIOL S, GONDAR D, et al. Comparison of arsenate, chromate and molybdate binding on schwertmannite: surface adsorption vs anion-exchange [J]. J Colloid Interface Sci, 2012, 386(1): 338-343. doi: 10.1016/j.jcis.2012.07.008 [71] FUKUSHI K, SATO T, YANASE N. Solid-solution reactions in As(Ⅴ) sorption by schwertmannite [J]. Environ Sci Technol, 2003, 37(16): 3581-3586. doi: 10.1021/es026427i [72] VITHANA C L, SULLIVAN L A, BURTON E D, et al. Liberation of acidity and arsenic from schwertmannite: Effect of fulvic acid [J]. Chemical Geology, 2014, 372: 1-11. doi: 10.1016/j.chemgeo.2014.02.012 [73] BURTON E D, BUSH R T, SULLIVAN L A, et al. Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil [J]. Chemical Geology, 2008, 253(1/2): 64-73. [74] ZHANG J, LI Y X, LI W, et al. The synergistic trigger of the reductive dissolution of Schwertmannite-As(Ⅲ) and the release of arsenic from citric acid and UV irradiation [J]. Chemical Geology, 2019, 520: 11-20. doi: 10.1016/j.chemgeo.2019.05.004 [75] ZHANG J, LI W, LI Y, et al. Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(Ⅲ) and the release of adsorbed As(III) [J]. Environmental Pollution, 2019, 245: 711-718. doi: 10.1016/j.envpol.2018.11.047 [76] JOHNSTON S G, BENNETT W W, BURTON E D, et al. Rapid arsenic(Ⅴ)-reduction by fire in schwertmannite-rich soil enhances arsenic mobilisation [J]. Geochimica Et Cosmochimica Acta, 2018, 227: 1-18. doi: 10.1016/j.gca.2018.01.031 [77] FAN C, GUO C L, ZENG Y F, et al. The behavior of chromium and arsenic associated with redox transformation of schwertmannite in AMD environment [J]. Chemosphere, 2019, 222: 945-953. doi: 10.1016/j.chemosphere.2019.01.142 [78] TRESINTSI S, SIMEONIDIS K, VOURLIAS G, et al. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: Study of Fe(Ⅱ) oxidation-precipitation parameters [J]. Water Research, 2012, 46(16): 5255-5267. doi: 10.1016/j.watres.2012.06.049 [79] FERNANDEZ-ROJO L, HERY M, LE PAPE P, et al. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD) [J]. Water Research, 2017, 123: 594-606. doi: 10.1016/j.watres.2017.06.059 [80] XIE Y, ZHOU L X. Arsenite Removal from Simulated Groundwater by Biogenic Schwertmannite: A Column Trial [J]. Pedosphere, 2013, 23(3): 402-408. doi: 10.1016/S1002-0160(13)60032-6 [81] ZHANG J, SHI J, ZHANG S, et al. Schwertmannite Adherence to the Reactor Wall during the Bio-Synthesis Process and Deterioration of Its Structural Characteristics and Arsenic(III) Removal Efficiency [J]. Minerals, 2017, 7(4): 13. [82] JANNECK E, ARNOLD I, KOCH T, et al. Microbial synthesis of schwertmannite from lignite mine water and its utilization for removal of arsenic from mine waters and for production of iron pigments[C]. International Mine Water Association Symposium – Mine Water and Innovative Thinking. 2010. [83] YANG Z H, WU Z J, LIAO Y P, et al. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic contaminated soil [J]. Chemosphere, 2017, 181: 1-8. doi: 10.1016/j.chemosphere.2017.04.041 [84] CHAI L Y, TANG J W, LIAO Y P, et al. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans and its application in arsenic immobilization in the contaminated soil [J]. Journal of Soils And Sediments, 2016, 16(10): 2430-2438. doi: 10.1007/s11368-016-1449-7 [85] DEY A, SINGH R, PURKAIT M K. Cobalt ferrite nanoparticles aggregated schwertmannite: A novel adsorbent for the efficient removal of arsenic [J]. Journal of Water Process Engineering, 2014, 3: 1-9. doi: 10.1016/j.jwpe.2014.07.002 [86] 李旭伟, 贺静, 张健, 等. 透析对施氏矿物微观结构及其砷吸附能力的影响 [J]. 环境科学学报, 2020, 40(2): 546-553. LI X W, HE J, ZHANG J, et al. Effects of dialysis on the microstructure of schwertmannite and its arsenic removal ability [J]. Acta Scientiae Circumstantiae, 2020, 40(2): 546-553(in Chinese).
[87] PASCUA C S, MINATO M, YOKOYAMA S, et al. Uptake of dissolved arsenic during the retrieval of silica from spent geothermal brine [J]. Geothermics, 2007, 36(3): 230-242. doi: 10.1016/j.geothermics.2007.03.001 [88] IKEDA H, ITO K, SATO T. Composite material for purifying polluted water, contains fibrous raw material and schwertmannite compound in which one portion of sulfate ion is substituted by anion as such as arsenate ion, phosphate ion or silicate ion: Japan, JP2009136795-A[P]. 2009 [89] OKIDO M, BANDO Y, ESKANDARPOUR A, et al. Magnetic chemical absorber used in waste-liquid processing, comprises composite comprising nuclear material consisting of magnetite fine particles, and schwertmannite precipitated around and chemically bonded with nuclear material: WO2008023853-A1[P].2008