[1] HERLEKAR M, BARVE S, KUMAR R. Plant-mediated green synthesis of iron nanoparticles [J]. Journal of Nanoparticles, 2014, 2014: 1-9.
[2] GOUTAM S P, SAXENA G, ROY D, et al. Green synthesis of nanoparticles and their applications in water and wastewater [M]. TreatmentBioremediation of Industrial Waste for Environmental Safety, 2020: 349-379.
[3] WEI Y F, WEI S D, LIU C B, et al. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics [J]. Water Research, 2019, 167: 115107. doi: 10.1016/j.watres.2019.115107
[4] FAHMY H M, MOHAMED F M, MARZOUQ M H, et al. Review of green methods of iron nanoparticles synthesis and applications [J]. BioNanoScience, 2018, 8(2): 491-503. doi: 10.1007/s12668-018-0516-5
[5] BOLADE O P, WILLIAMS A B, BENSON N U. Green synthesis of iron-based nanomaterials for environmental remediation: A review [J]. Environmental Nanotechnology, Monitoring & Management, 2020, 13: 100279.
[6] CRANE R A, SCOTT T B. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology [J]. Journal of Hazardous Materials, 2012, 211/212: 112-125. doi: 10.1016/j.jhazmat.2011.11.073
[7] BARAGAÑO D, ALONSO J, GALLEGO J R, et al. Zero valent iron and goethite nanoparticles as new promising remediation techniques for As-polluted soils [J]. Chemosphere, 2020, 238: 124624. doi: 10.1016/j.chemosphere.2019.124624
[8] SATHISHKUMAR M, SNEHA K, YUN Y S. Immobilization of silver nanoparticles synthesized using Curcuma longa Tuber powder and extract on cotton cloth for bactericidal activity [J]. Bioresource Technology, 2010, 101(20): 7958-7965. doi: 10.1016/j.biortech.2010.05.051
[9] MACHADO S, PINTO S L, GROSSO J P, et al. Green production of zero-valent iron nanoparticles using tree leaf extracts [J]. Science of the Total Environment, 2013, 445/446: 1-8. doi: 10.1016/j.scitotenv.2012.12.033
[10] AFSHEEN S, TAHIR M B, IQBAL T, et al. Green synthesis and characterization of novel iron particles by using different extracts [J]. Journal of Alloys and Compounds, 2018, 732: 935-944. doi: 10.1016/j.jallcom.2017.10.137
[11] WENG X L, HUANG L L, CHEN Z L, et al. Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite [J]. Industrial Crops and Products, 2013, 51: 342-347. doi: 10.1016/j.indcrop.2013.09.024
[12] WENG X L, GUO M Y, LUO F, et al. One-step green synthesis of bimetallic Fe/Ni nanoparticles by Eucalyptus leaf extract: Biomolecules identification, characterization and catalytic activity [J]. Chemical Engineering Journal, 2017, 308: 904-911. doi: 10.1016/j.cej.2016.09.134
[13] MYSTRIOTI C, XANTHOPOULOU T D, TSAKIRIDIS P, et al. Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction [J]. Science of the Total Environment, 2016, 539: 105-113. doi: 10.1016/j.scitotenv.2015.08.091
[14] WENG X L, JIN X Y, LIN J J, et al. Removal of mixed contaminants Cr(Ⅵ) and Cu(Ⅱ) by green synthesized iron based nanoparticles [J]. Ecological Engineering, 2016, 97: 32-39. doi: 10.1016/j.ecoleng.2016.08.003
[15] VENKATESWARLU S, KUMAR B N, PRATHIMA B, et al. A novel green synthesis of Fe3O4 magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb(Ⅱ) from aqueous environment [J]. Arabian Journal of Chemistry, 2019, 12(4): 588-596. doi: 10.1016/j.arabjc.2014.09.006
[16] CAO D, JIN X Y, GAN L, et al. Removal of phosphate using iron oxide nanoparticles synthesized by Eucalyptus leaf extract in the presence of CTAB surfactant [J]. Chemosphere, 2016, 159: 23-31. doi: 10.1016/j.chemosphere.2016.05.080
[17] WANG T, LIN J J, CHEN Z L, et al. Green synthesized iron nanoparticles by green tea and Eucalyptus leaves extracts used for removal of nitrate in aqueous solution [J]. Journal of Cleaner Production, 2014, 83: 413-419. doi: 10.1016/j.jclepro.2014.07.006
[18] DEVATHA C P, THALLA A K, KATTE S Y. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water [J]. Journal of Cleaner Production, 2016, 139: 1425-1435. doi: 10.1016/j.jclepro.2016.09.019
[19] POGUBEROVIĆ S S, KRČMAR D M, MALETIĆ S P, et al. Removal of As(Ⅲ) and Cr(Ⅵ) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts [J]. Ecological Engineering, 2016, 90: 42-49. doi: 10.1016/j.ecoleng.2016.01.083
[20] EHRAMPOUSH M H, MIRIA M, SALMANI M H, et al. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract [J]. Journal of Environmental Health Science and Engineering, 2015, 13(1): 1-7. doi: 10.1186/s40201-015-0157-3
[21] KHAIRUL HANIF MOHD NAZRI M, SAPAWE N. A short review on green synthesis of iron metal nanoparticles via plants extracts [J]. Materials Today:Proceedings, 2020, 31: A48-A53. doi: 10.1016/j.matpr.2020.10.968
[22] MAKAROV V V, MAKAROVA S S, LOVE A J, et al. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants [J]. Langmuir, 2014, 30(20): 5982-5988. doi: 10.1021/la5011924
[23] GOUTAM S P, SAXENA G, SINGH V, et al. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater [J]. Chemical Engineering Journal, 2018, 336: 386-396. doi: 10.1016/j.cej.2017.12.029
[24] AL-SHNANI F, AL-HADDAD T, KARABET F, et al. Chitosan loaded with silver nanoparticles, CS-AgNPs, using Thymus syriacus, wild mint, and rosemary essential oil extracts as reducing and capping agents [J]. Journal of Physical Organic Chemistry, 2017, 30(11): e3680. doi: 10.1002/poc.3680
[25] LUO F, CHEN Z L, MEGHARAJ M, et al. Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles [J]. RSC Adv, 2014, 4(96): 53467-53474. doi: 10.1039/C4RA08808E
[26] XIAO Z L, YUAN M, YANG B, et al. Plant-mediated synthesis of highly active iron nanoparticles for Cr (Ⅵ) removal: Investigation of the leading biomolecules [J]. Chemosphere, 2016, 150: 357-364. doi: 10.1016/j.chemosphere.2016.02.056
[27] MANQUIÁN-CERDA K, CRUCES E, ANGÉLICA RUBIO M, et al. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate [J]. Ecotoxicology and Environmental Safety, 2017, 145: 69-77. doi: 10.1016/j.ecoenv.2017.07.004
[28] ATAROD M, NASROLLAHZADEH M, MOHAMMAD SAJADI S. Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol [J]. Journal of Colloid and Interface Science, 2016, 465: 249-258. doi: 10.1016/j.jcis.2015.11.060
[29] MONDAL P, PURKAIT M K. Preparation and characterization of novel green synthesized iron-aluminum nanocomposite and studying its efficiency in fluoride removal [J]. Chemosphere, 2019, 235: 391-402. doi: 10.1016/j.chemosphere.2019.06.189
[30] TANG S C N, LO I M C. Magnetic nanoparticles: Essential factors for sustainable environmental applications [J]. Water Research, 2013, 47(8): 2613-2632. doi: 10.1016/j.watres.2013.02.039
[31] SAMADI Z, YAGHMAEIAN K, MORTAZAVI-DERAZKOLA S, et al. Facile green synthesis of zero-valent iron nanoparticles using barberry leaf extract (GnZVI@BLE) for photocatalytic reduction of hexavalent chromium [J]. Bioorganic Chemistry, 2021, 114: 105051. doi: 10.1016/j.bioorg.2021.105051
[32] JAIN R, MENDIRATTA S, KUMAR L, et al. Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye [J]. Current Research in Green and Sustainable Chemistry, 2021, 4: 100086. doi: 10.1016/j.crgsc.2021.100086
[33] SHAKER ARDAKANI L, ALIMARDANI V, TAMADDON A M, et al. Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: Methyl orange dye degradation and antimicrobial properties [J]. Heliyon, 2021, 7(2): e06159. doi: 10.1016/j.heliyon.2021.e06159
[34] SEBASTIAN A, NANGIA A, PRASAD M N V. A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: Implications to treat metal contaminated water and heavy metal stress in Oryza sativa L [J]. Journal of Cleaner Production, 2018, 174: 355-366. doi: 10.1016/j.jclepro.2017.10.343
[35] SAIKIA I, HAZARIKA M, HUSSIAN N, et al. Biogenic synthesis of Fe2O3@SiO2 nanoparticles for ipso-hydroxylation of boronic acid in water [J]. Tetrahedron Letters, 2017, 58(45): 4255-4259. doi: 10.1016/j.tetlet.2017.09.075
[36] MONDAL P, PURKAIT M K. Green synthesized iron nanoparticles supported on pH responsive polymeric membrane for nitrobenzene reduction and fluoride rejection study: Optimization approach [J]. Journal of Cleaner Production, 2018, 170: 1111-1123. doi: 10.1016/j.jclepro.2017.09.222
[37] LIN Z, WENG X L, OWENS G, et al. Simultaneous removal of Pb(Ⅱ) and rifampicin from wastewater by iron nanoparticles synthesized by a tea extract [J]. Journal of Cleaner Production, 2020, 242: 118476. doi: 10.1016/j.jclepro.2019.118476
[38] 刘妍君, 李剑锋, 陈祖亮, 等. 纳米铁的绿色合成及其去除水中污染物研究进展 [J]. 水处理技术, 2019, 45(1): 6-11,16. LIU Y J, LI J F, CHEN Z L, et al. Research progress of green synthesis of iron nanoparticle and its application on contaminants removal from water [J]. Technology of Water Treatment, 2019, 45(1): 6-11,16(in Chinese).
[39] DESALEGN B, MEGHARAJ M, CHEN Z L, et al. Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS [J]. Heliyon, 2019, 5(5): e01750. doi: 10.1016/j.heliyon.2019.e01750
[40] HUANG L L, LUO F, CHEN Z L, et al. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 137: 154-159. doi: 10.1016/j.saa.2014.08.116
[41] WANG N, HSU C, ZHU L H, et al. Influence of metal oxide nanoparticles concentration on their Zeta potential [J]. Journal of Colloid and Interface Science, 2013, 407: 22-28. doi: 10.1016/j.jcis.2013.05.058
[42] SCHWERTMANN U, CORNELL R M, Iron oxides in the laboratory: preparation and characterization[M]. John Wiley & Sons. 2008.
[43] MARTÍNEZ-CABANAS M, LÓPEZ-GARCÍA M, BARRIADA J L, et al. Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal [J]. Chemical Engineering Journal, 2016, 301: 83-91. doi: 10.1016/j.cej.2016.04.149
[44] WANG T, JIN X Y, CHEN Z L, et al. Green synthesis of Fe nanoparticles using Eucalyptus leaf extracts for treatment of eutrophic wastewater [J]. Science of the Total Environment, 2014, 466/467: 210-213. doi: 10.1016/j.scitotenv.2013.07.022
[45] YÜRÜM A, KOCABAŞ-ATAKLı Z Ö, SEZEN M, et al. Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (Ⅴ) removal from water [J]. Chemical Engineering Journal, 2014, 242: 321-332. doi: 10.1016/j.cej.2014.01.005
[46] MAHMOUD M E, AMIRA M F, ZAGHLOUL A A, et al. High performance microwave-enforced solid phase extraction of heavy metals from aqueous solutions using magnetic iron oxide nanoparticles-protected-nanosilica [J]. Separation and Purification Technology, 2016, 163: 169-172. doi: 10.1016/j.seppur.2016.02.039
[47] WILLIAMS M J, SÁNCHEZ E, ALURI E R, et al. Microwave-assisted synthesis of highly crystalline, multifunctional iron oxide nanocomposites for imaging applications [J]. RSC Advances, 2016, 6(87): 83520-83528. doi: 10.1039/C6RA11819D
[48] LIANG J J, ZHUO M, GUO D, et al. Green and rapid synthesis of 3D Fe2(MoO4)3 by microwave irradiation to detect H2S gas [J]. Materials Letters, 2016, 168: 171-175. doi: 10.1016/j.matlet.2016.01.048
[49] KOMBAIAH K, VIJAYA J J, KENNEDY L J, et al. Self heating efficiency of CoFe2O4 nanoparticles: A comparative investigation on the conventional and microwave combustion method [J]. Journal of Alloys and Compounds, 2018, 735: 1536-1545. doi: 10.1016/j.jallcom.2017.11.279
[50] KOMBAIAH K, VIJAYA J J, KENNEDY L J, et al. Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies [J]. Journal of Physics and Chemistry of Solids, 2018, 115: 162-171. doi: 10.1016/j.jpcs.2017.12.024
[51] AHMMAD B, LEONARD K, SHARIFUL ISLAM M, et al. Green synthesis of mesoporous hematite (α-Fe2O3) nanoparticles and their photocatalytic activity [J]. Advanced Powder Technology, 2013, 24(1): 160-167. doi: 10.1016/j.apt.2012.04.005
[52] PHUMYING S, LABUAYAI S, THOMAS C, et al. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles [J]. Applied Physics A, 2013, 111(4): 1187-1193. doi: 10.1007/s00339-012-7340-5
[53] ZHANG Y T, JIAO X Q, LIU N, et al. Enhanced removal of aqueous Cr(Ⅵ) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar [J]. Chemosphere, 2020, 245: 125542. doi: 10.1016/j.chemosphere.2019.125542
[54] SOLIEMANZADEH A, FEKRI M. The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(Ⅵ): Effect of relative parameters and soil experiments [J]. Microporous and Mesoporous Materials, 2017, 239: 60-69. doi: 10.1016/j.micromeso.2016.09.050
[55] ZHU F, MA S Y, LIU T, et al. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater [J]. Journal of Cleaner Production, 2018, 174: 184-190. doi: 10.1016/j.jclepro.2017.10.302
[56] TANDON P K, SHUKLA R C, SINGH S B. Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor [J]. Industrial & Engineering Chemistry Research, 2013, 52(30): 10052-10058.
[57] ZHANG P, O’CONNOR D, WANG Y N, et al. A green biochar/iron oxide composite for methylene blue removal [J]. Journal of Hazardous Materials, 2020, 384: 121286. doi: 10.1016/j.jhazmat.2019.121286
[58] de LIMA BARIZÃO A C, SILVA M F, ANDRADE M, et al. Green synthesis of iron oxide nanoparticles for tartrazine and Bordeaux red dye removal [J]. Journal of Environmental Chemical Engineering, 2020, 8(1): 103618. doi: 10.1016/j.jece.2019.103618
[59] CHEN L S, NI R, YUAN T J, et al. Effects of green synthesis, magnetization, and regeneration on ciprofloxacin removal by bimetallic nZVI/Cu composites and insights of degradation mechanism [J]. Journal of Hazardous Materials, 2020, 382: 121008. doi: 10.1016/j.jhazmat.2019.121008
[60] GUO B, LI M L, LI S. The comparative study of a homogeneous and a heterogeneous system with green synthesized iron nanoparticles for removal of Cr(VI) [J]. Scientific Reports, 2020, 10: 7382. doi: 10.1038/s41598-020-64476-5
[61] SIDDIQUI S I, NAUSHAD M, CHAUDHRY S A. Promising prospects of nanomaterials for arsenic water remediation: A comprehensive review [J]. Process Safety and Environmental Protection, 2019, 126: 60-97. doi: 10.1016/j.psep.2019.03.037
[62] NITHYA K, SATHISH A, SENTHIL KUMAR P, et al. Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II) ions [J]. Journal of Industrial and Engineering Chemistry, 2018, 59: 230-241. doi: 10.1016/j.jiec.2017.10.028
[63] XIAO Z L, ZHANG H D, XU Y, et al. Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles [J]. Separation and Purification Technology, 2017, 174: 466-473. doi: 10.1016/j.seppur.2016.10.047
[64] 徐向荣, 王文华, 李华斌. 比色法测定Fenton反应产生的羟自由基及其应用 [J]. 生物化学与生物物理进展, 1999, 26(1): 67-68. doi: 10.3321/j.issn:1000-3282.1999.01.019 XU X R, WANG W H, LI H B. Determination of hydroxyl radicals in Fenton reaction by colorimetric assay and its application [J]. Progress in Biochemistry and Biophysics, 1999, 26(1): 67-68(in Chinese). doi: 10.3321/j.issn:1000-3282.1999.01.019
[65] TRUSKEWYCZ A, SHUKLA R, BALL A S. Iron nanoparticles synthesized using green tea extracts for the Fenton-like degradation of concentrated dye mixtures at elevated temperatures [J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 4409-4417. doi: 10.1016/j.jece.2016.10.008
[66] LUO F, YANG D, CHEN Z L, et al. One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II [J]. Journal of Hazardous Materials, 2016, 303: 145-153. doi: 10.1016/j.jhazmat.2015.10.034