[1] |
张进德, 郗富瑞. 我国废弃矿山生态修复研究[J]. 生态学报, 2020, 40(21): 7921 − 7930.
|
[2] |
李建中, 张进德. 我国矿山地质环境调查工作探讨[J]. 水文地质工程地质, 2018, 45(4): 169 − 172.
|
[3] |
YOUNGER P L. Hydrogeochemistry of minewaters flowing from abandoned coal workings in County Durham[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1995, 28: 101 − 113. doi: 10.1144/GSL.QJEGH.1995.028.S2.02
|
[4] |
CHEN Y T, LI J T, CHEN L X, et al. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage[J]. Environmental Science & Technology, 2014, 48: 5537 − 5545.
|
[5] |
AKCIL A, KOLDAS S. Acid mine drainage (AMD): Causes, treatment and case studies[J]. Journal of Cleaner Production, 2006, 14: 1139 − 1145. doi: 10.1016/j.jclepro.2004.09.006
|
[6] |
JOHNSON D B, HALLBERG K B. Acid mine drainage remediation options: A review[J]. Science of the Total Environment, 2005, 338: 3 − 14. doi: 10.1016/j.scitotenv.2004.09.002
|
[7] |
YOUNGER P L. Coalfield closure and the water environment in Europe[J]. Transactions of the Institutions of Mining and Metallurgy Section a-Mining Technology, 2002, 111: 201 − 209.
|
[8] |
ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49: 750 − 759.
|
[9] |
LUO L, MA Y B, ZHANG S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90: 2524 − 2530.
|
[10] |
WILLIAMS P N, LEI M, SUN G X, et al. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China[J]. Environmental Science & Technology, 2009, 43: 637 − 642.
|
[11] |
DAVE J, HUGH P, CERI J. Abandoned mines and the water environment[R]. Science project SC030136-41, Environment Agency in England and Wales, 2008.
|
[12] |
POTTER H A B, JARVIS A P. Managing mine water pollution to deliver the water framework directive[C]//Proceedings of the 4th CIWEM Annual Conference: Emerging Environmental Issues and Future Challenges. Newcastle upon Tyne, 2006.
|
[13] |
YOUNGER P L, BANWART S A, HEDIN R S. Mine water: Hydrology, pollution, remediation. Environmental Pollution Series[M]. Dordrecht: Kluwer Academic Publishers, 2002.
|
[14] |
HERLIHY A T, KAUFMANN P R, MITCH M E, et al. Regional estimates of acid-mine drainage impact on streams in the Mid-Atlantic and Southeastern United-States[J]. Water Air and Soil Pollution, 1990, 50: 91 − 107.
|
[15] |
KLEINMANN R L P. Acid mine drainage in the United States controlling the impact on streams and rivers[C]//4th World Congress on the Conservation of the Built and Natural Environments. University of Toronto, 1989.
|
[16] |
BELL F G, HALBICH T F J, BULLOCK S E T. The effects of acid mine drainage from an old mine in the Witbank Coalfield, South Africa[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2002, 35: 265 − 278. doi: 10.1144/1470-9236/00121
|
[17] |
FENG Q Y, LI T, QIAN B, et al. Chemical characteristics and utilization of coal mine drainage in China[J]. Mine Water and the Environment, 2014, 33: 276 − 286. doi: 10.1007/s10230-014-0271-y
|
[18] |
国家环境保护总局. 污水综合排放标准: GB 8978—1996 [S]. 北京: 中国标准出版社, 1996.
|
[19] |
国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838—2002 [S]. 北京: 中国环境科学出版社, 2002.
|
[20] |
BLODAU C. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds[J]. Science of the Total Environment, 2006, 369: 307 − 332. doi: 10.1016/j.scitotenv.2006.05.004
|
[21] |
NAIDU G, RYU S, THIRUVENKATACHARI R, et al. A critical review on remediation, reuse, and resource recovery from acid mine drainage[J]. Environmental Pollution, 2019, 247: 1110 − 1124. doi: 10.1016/j.envpol.2019.01.085
|
[22] |
STUMM W, LEE G F. Oxygenation of ferrous iron[J]. Industrial and Engineering Chemistry, 1961, 53: 143 − 146. doi: 10.1021/ie50614a030
|
[23] |
SUNG W, MORGAN J J. Kinetics and product of ferrous iron oxygenation in aqueous systems[J]. Environmental Science & Technology, 1980, 14: 561 − 568.
|
[24] |
SINGER P C, STUMM W. Acidic mine drainage: The rate-determining step[J]. Science, 1970, 3921: 1121 − 1123.
|
[25] |
EDWARDS K J, SCHRENK M O, HAMERS R, et al. Microbial oxidation of pyrite: Experiments using microorganisms from an extreme acidic environment[J]. American Mineralogist, 1998, 83: 1444 − 1453. doi: 10.2138/am-1998-11-1233
|
[26] |
GLEISNER M, HERBERT R B, KOCKUM P C F. Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J]. Chemical Geology, 2006, 225: 16 − 29. doi: 10.1016/j.chemgeo.2005.07.020
|
[27] |
MOSES C O, HERMAN J S. Pyrite oxidation at circumneutral pH[J]. Geochimica et Cosmochimica Acta, 1991, 55: 471 − 482. doi: 10.1016/0016-7037(91)90005-P
|
[28] |
WOOD S C, YOUNGER P L, ROBINS N S. Long-term changes in the quality of polluted minewater discharges from abandoned underground coal workings in Scotland[J]. Quarterly Journal of Engineering Geology, 1999, 32: 69 − 79. doi: 10.1144/GSL.QJEG.1999.032.P1.05
|
[29] |
NORDSTROM D K, BALL J W, DONAHOE R J, et al. Groundwater chemistry and water-rock interactions at Stripa[J]. Geochimica et Cosmochimica Acta, 1989, 53: 1727 − 1740. doi: 10.1016/0016-7037(89)90294-9
|
[30] |
NORDSTROM D K, BLOWES D W, PTACEK C J. Hydrogeochemistry and microbiology of mine drainage: An update[J]. Applied Geochemistry, 2015, 57: 3 − 16. doi: 10.1016/j.apgeochem.2015.02.008
|
[31] |
KIRBY C S, CRAVOTTA C A. Net alkalinity and net acidity 1: Theoretical considerations[J]. Applied Geochemistry, 2005, 20: 1920 − 1940. doi: 10.1016/j.apgeochem.2005.07.002
|
[32] |
LINDSAY M B J, CONDON P D, JAMBOR J L, et al. Mineralogical, geochemical, and microbial investigation of a sulfide-rich tailings deposit characterized by neutral drainage[J]. Applied Geochemistry, 2009, 24: 2212 − 2221. doi: 10.1016/j.apgeochem.2009.09.012
|
[33] |
GANDY C J, SMITH J W N, JARVIS A P. Attenuation of mining-derived pollutants in the hyporheic zone: A review[J]. Science of the Total Environment, 2007, 373: 435 − 446. doi: 10.1016/j.scitotenv.2006.11.004
|
[34] |
KIRBY C S, DENNIS A, KAHLER A. Aeration to degas CO2, increase pH, and increase iron oxidation rates for efficient treatment of net alkaline mine drainage[J]. Applied Geochemistry, 2009, 24: 1175 − 1184. doi: 10.1016/j.apgeochem.2009.02.028
|
[35] |
THORSTENSON D C, FISHER D W, CROFT M G. The geochemistry of the Fox Hills Basal Hell Creek Aquifer in southwestern North-Dakota and northwestern South-Dakota[J]. Water Resources Research, 1979, 15(6): 1479 − 1498. doi: 10.1029/WR015i006p01479
|
[36] |
YOUNGER P L. The longevity of minewater pollution: A basis for decision-making[J]. Science of the Total Environment, 1997, 194: 457 − 466.
|
[37] |
YOUNGER P L. The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom[J]. Mine Water and the Environment, 2000, 19: 84 − 97. doi: 10.1007/BF02687257
|
[38] |
KEFENI K K, MSAGATI T A M, MAMBA B B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review[J]. Journal of Cleaner Production, 2017, 151: 475 − 493. doi: 10.1016/j.jclepro.2017.03.082
|
[39] |
COULTON R, BULLEN C, HALLETT C. The design and optimisation of active mine water treatment plants[J]. Land Contamination Reclamation, 2003, 11: 273 − 279. doi: 10.2462/09670513.825
|
[40] |
CHEN T, YAN B, LEI C, et al. Pollution control and metal resource recovery for acid mine drainage[J]. Hydrometallurgy, 2014, 147: 112 − 119.
|
[41] |
YAN B, MAI G, CHEN T, et al. Pilot test of pollution control and metal resource recovery for acid mine drainage[J]. Water Science and Technology, 2015, 72: 2308 − 2317. doi: 10.2166/wst.2015.429
|
[42] |
肖利萍, 耿莘惠, 裴格, 等. 膨润土复合颗粒与SRB协同处理酸性矿山废水[J]. 环境工程学报, 2016, 10(11): 6457 − 6463. doi: 10.12030/j.cjee.201506182
|
[43] |
王芳, 罗琳, 易建龙, 等. 赤泥质陶粒吸附模拟酸性废水中铜离子的行为[J]. 环境工程学报, 2016, 10(5): 2440 − 2446. doi: 10.12030/j.cjee.201412214
|
[44] |
SKOUSEN J, ZIPPER C E, ROSE A, et al. Review of passive systems for acid mine drainage treatment[J]. Mine Water and the Environment, 2017, 36: 133 − 153. doi: 10.1007/s10230-016-0417-1
|
[45] |
ZIPPER C, SKOUSEN J. Passive treatment of acid mine drainage. Handbook of Acid Mine Drainage, Rock Drainage and Acid Sulfate Soils [M]. New Jersey: John Wiley & Sons, Inc, 2014.
|
[46] |
GAGLIANO W B, BRILL M R, BIGHAM J M, et al. Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland[J]. Geochimica et Cosmochimica Acta, 2004, 68: 2119 − 2128. doi: 10.1016/j.gca.2003.10.038
|
[47] |
周立祥. 生物矿化: 构建酸性矿山废水新型被动处理系统的新方法[J]. 化学学报, 2017, 75(6): 552 − 559.
|
[48] |
YAN S, CHENG K Y, MORRIS C, et al. Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment[J]. Chemosphere, 2020, 252: 126570. doi: 10.1016/j.chemosphere.2020.126570
|
[49] |
SUAREZ J I, AYBAR M, NANCUCHEO I, et al. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors[J]. Chemosphere, 2020, 244: 125508. doi: 10.1016/j.chemosphere.2019.125508
|
[50] |
YOUNGER P L. Proceedings of CIWEM Conference on “Minewater Treatment Using Wetlands” [C]//Journal of the Chartered Institution of Water and Environmental Management. Newcastle upon Tyne, 1998, 12: 68-69.
|
[51] |
JARVIS A P, YOUNGER P L. Design, construction and performance of a full-scale compost wetland for mine-spoil drainage treatment at Quaking Houses[J]. Journal of the Chartered Institution of Water and Environmental Management, 1999, 13: 313 − 318. doi: 10.1111/j.1747-6593.1999.tb01054.x
|
[52] |
FABIAN D, YOUNGER P L, APLIN A C. Constructed wetlands for the passive treatment of acid mine drainage allow a quantitative appraisal of the biogeochemical removal of iron, sulphur, and other pollutants[J]. Abstracts of Papers of the American Chemical Society, 2005, 230: 1785 − 1786.
|
[53] |
BATTY L C, YOUNGER P L. Critical role of macrophytes in achieving low iron concentrations in mine water treatment wetlands[J]. Environmental Science & Technology, 2002, 36: 3997 − 4002.
|
[54] |
BATTY L C, YOUNGER P L. Growth of Phragmites australis (Cav. ) Trin ex. Steudel in mine water treatment wetlands: Effects of metal and nutrient uptake[J]. Environmental Pollution, 2004, 132: 85 − 93. doi: 10.1016/j.envpol.2004.03.022
|
[55] |
SINGH S, CHAKRABORTY S. Performance of organic substrate amended constructed wetland treating acid mine drainage (AMD) of North-Eastern India[J]. Journal of Hazardous Materials, 2020, 397: 122719. doi: 10.1016/j.jhazmat.2020.122719
|
[56] |
CHEN M, SOULSBY C, YOUNGER P L. Modelling the evolution of minewater pollution at Polkemmet Colliery, Almond catchment, Scotland[J]. Quarterly Journal of Engineering Geology, 1999, 32: 351 − 362. doi: 10.1144/GSL.QJEG.1999.032.P4.04
|
[57] |
BURKE S P, YOUNGER P L. Groundwater rebound in the South Yorkshire coalfield: A first approximation using the GRAM model[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2000, 33: 149 − 160. doi: 10.1144/qjegh.33.2.149
|
[58] |
陈亚, 张瑞雪, 吴攀, 等. 碳酸盐岩煅烧改性处理酸性矿山废水的研究[J]. 环境污染与防治, 2015, 37(1): 62 − 67.
|
[59] |
郁孟洁, 张瑞雪, 吴攀, 等. 钢渣处理酸性煤矿废水的实验研究[J]. 贵州大学学报, 2014, 31(6): 122 − 125.
|
[60] |
孙福成, 丁慧敏, 柯伟, 等. 城市生活垃圾焚烧飞灰与矿山废水共处置技术研究与工程应用[J]. 环境工程学报, 2016, 10(4): 2151 − 2156. doi: 10.12030/j.cjee.20160490
|
[61] |
龙中, 吴攀, 黄家琰, 等. 多级复氧反应-垂直流人工湿地深度处理煤矿酸性废水[J]. 环境工程学报, 2019, 13(6): 1391 − 1399. doi: 10.12030/j.cjee.201810086
|
[62] |
狄军贞, 江富, 马龙, 等. PRB强化垂直流人工湿地系统处理煤矿废水[J]. 环境工程学报, 2013, 7(6): 2033 − 2037.
|