[1] |
HE L Y, LIU Y S, SU H C, et al. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: Identification of indicator ARGs and correlations with environmental variables [J]. Environmental Science & Technology, 2014, 48(22): 13120-13129.
|
[2] |
QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment [J]. Environment International, 2018, 110: 160-172. doi: 10.1016/j.envint.2017.10.016
|
[3] |
SUN Y B, XU Y, XU Y M, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials [J]. Environmental Pollution, 2016, 208: 739-746. doi: 10.1016/j.envpol.2015.10.054
|
[4] |
YU H, ZHU Y F, HUI A P, et al. Removal of antibiotics from aqueous solution by using porous adsorbent templated from eco-friendly Pickering aqueous foams [J]. Journal of Environmental Sciences, 2021, 102: 352-362. doi: 10.1016/j.jes.2020.09.010
|
[5] |
王盈盈, 余静, 曾红杰, 等. 磁性吸附剂CeO2/MZFS去除水中盐酸四环素 [J]. 环境科学学报, 2020, 40(9): 3250-3258.
WANG Y Y, YU J, ZENG H J, et al. Adsorption of tetracycline hydrochloride by magnetic adsorbent CeO2/MZFS [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3250-3258(in Chinese).
|
[6] |
JOSEPH L, JUN B M, JANG M, et al. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review [J]. Chemical Engineering Journal, 2019, 369: 928-946. doi: 10.1016/j.cej.2019.03.173
|
[7] |
SHEN Y, CHEN B L. Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water [J]. Environmental Science & Technology, 2015, 49(12): 7364-7372.
|
[8] |
XIONG W P, ZENG G M, YANG Z H, et al. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent [J]. Science of the Total Environment, 2018, 627: 235-244. doi: 10.1016/j.scitotenv.2018.01.249
|
[9] |
侯嫔, 杨晓瑜, 霍燕龙, 等. 超声氧化多壁碳纳米管对水中Ni(Ⅱ)的吸附效能 [J]. 环境工程学报, 2021, 15(7): 2256-2264. doi: 10.12030/j.cjee.202102127
HOU P, YANG X Y, HUO Y L, et al. Adsorption efficiency of Ni(Ⅱ) in water by ultrasonically oxidized multi-walled carbon nanotubes [J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2256-2264(in Chinese). doi: 10.12030/j.cjee.202102127
|
[10] |
ZHANG B P, HAN X L, GU P J, et al. Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk [J]. Journal of Molecular Liquids, 2017, 238: 316-325. doi: 10.1016/j.molliq.2017.04.022
|
[11] |
SOPHIA A C, LIMA E C. Removal of emerging contaminants from the environment by adsorption [J]. Ecotoxicology and Environmental Safety, 2018, 150: 1-17. doi: 10.1016/j.ecoenv.2017.12.026
|
[12] |
杜明阳, 邹京, 豆俊峰, 等. 钾改性蒙脱石磁性微球对铯的吸附性能 [J]. 环境化学, 2021, 40(3): 779-789. doi: 10.7524/j.issn.0254-6108.2019110202
DU M Y, ZOU J, DOU J F, et al. Adsorption properties of potassium modified montmorillonite magnetic microspheres for cesium [J]. Environmental Chemistry, 2021, 40(3): 779-789(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110202
|
[13] |
GULEN B, DEMIRCIVI P. Adsorption properties of flouroquinolone type antibiotic ciprofloxacin into 2: 1 dioctahedral clay structure: Box-Behnken experimental design [J]. Journal of Molecular Structure, 2020, 1206: 127659. doi: 10.1016/j.molstruc.2019.127659
|
[14] |
ZHANG B F, YUAN P, GUO H Z, et al. Effect of curing conditions on the microstructure and mechanical performance of geopolymers derived from nanosized tubular halloysite [J]. Construction and Building Materials, 2021, 268: 121186. doi: 10.1016/j.conbuildmat.2020.121186
|
[15] |
BEN M'BAREK JEMAÏ M, SDIRI A, ERRAIS E, et al. Characterization of the Ain Khemouda halloysite (western Tunisia) for ceramic industry [J]. Journal of African Earth Sciences, 2015, 111: 194-201. doi: 10.1016/j.jafrearsci.2015.07.014
|
[16] |
JAUKOVIĆ V, KRAJIŠNIK D, DAKOVIĆ A, et al. Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for sustained drug release [J]. Materials Science and Engineering:C, 2021, 123: 112029. doi: 10.1016/j.msec.2021.112029
|
[17] |
YUAN P, TAN D Y, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes: Recent research advances and future prospects [J]. Applied Clay Science, 2015, 112/113: 75-93. doi: 10.1016/j.clay.2015.05.001
|
[18] |
CHANG P R, XIE Y F, WU D L, et al. Amylose wrapped halloysite nanotubes [J]. Carbohydrate Polymers, 2011, 84(4): 1426-1429. doi: 10.1016/j.carbpol.2011.01.038
|
[19] |
JOO Y, JEON Y, LEE S U, et al. Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes (HNT-COOH) [J]. The Journal of Physical Chemistry C, 2012, 116(34): 18230-18235. doi: 10.1021/jp3038945
|
[20] |
MATUSIK J, WŚCISŁO A. Enhanced heavy metal adsorption on functionalized nanotubular halloysite interlayer grafted with aminoalcohols [J]. Applied Clay Science, 2014, 100: 50-59. doi: 10.1016/j.clay.2014.06.034
|
[21] |
王嘉玮. 渭河西安段表层水体中抗生素的分布特征及生态风险评价[D]. 西安: 西安理工大学, 2018.
WANG J W. Distribution characteristics and ecological risk assessment of antibiotics in surface water of xi’an section of Weihe river[D]. Xi’an: Xi’an University of Technology, 2018(in Chinese).
|
[22] |
COSTA R F, FIRMANO R F, COLZATO M, et al. Sulfur speciation in a tropical soil amended with lime and phosphogypsum under long-term no-tillage system [J]. Geoderma, 2022, 406: 115461. doi: 10.1016/j.geoderma.2021.115461
|
[23] |
ZHANG W, WANG L, SU Y G, et al. Indium oxide/Halloysite composite as highly efficient adsorbent for tetracycline Removal: Key roles of hydroxyl groups and interfacial interaction [J]. Applied Surface Science, 2021, 566: 150708. doi: 10.1016/j.apsusc.2021.150708
|
[24] |
WU J Y, WANG Y H, WU Z X, et al. Adsorption properties and mechanism of sepiolite modified by anionic and cationic surfactants on oxytetracycline from aqueous solutions [J]. Science of the Total Environment, 2020, 708: 134409. doi: 10.1016/j.scitotenv.2019.134409
|
[25] |
ZHANG Y G, BAI L B, CHENG C, et al. A novel surface modification method upon halloysite nanotubes: A desirable cross-linking agent to construct hydrogels [J]. Applied Clay Science, 2019, 182: 105259. doi: 10.1016/j.clay.2019.105259
|
[26] |
FAKHRUDDIN K, HASSAN R, KHAN M U A, et al. Halloysite nanotubes and halloysite-based composites for biomedical applications [J]. Arabian Journal of Chemistry, 2021, 14(9): 103294. doi: 10.1016/j.arabjc.2021.103294
|
[27] |
CAN M, DEMIRCI S, YILDRIM Y, et al. Modification of halloysite clay nanotubes with various alkyl halides, and their characterization, blood compatibility, biocompatibility, and genotoxicity [J]. Materials Chemistry and Physics, 2021, 259: 124013. doi: 10.1016/j.matchemphys.2020.124013
|
[28] |
SZCZEPANIK B, SŁOMKIEWICZ P, GARNUSZEK M, et al. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies [J]. Journal of Molecular Structure, 2015, 1084: 16-22. doi: 10.1016/j.molstruc.2014.12.008
|
[29] |
SHANG S, MA X, YUAN B H, et al. Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene [J]. Composites Part B:Engineering, 2019, 177: 107371. doi: 10.1016/j.compositesb.2019.107371
|
[30] |
CHENG H F, FROST R L, YANG J, et al. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2010, 77(5): 1014-1020. doi: 10.1016/j.saa.2010.08.039
|
[31] |
TAHERIAN S, RAHMANI S, SHARIF A, et al. In-situ polymerization of aliphatic-aromatic polyamide nanocomposites in the presence of Halloysite nanotubes [J]. Polymers for Advanced Technologies, 2019, 30(3): 538-544. doi: 10.1002/pat.4489
|
[32] |
ZHENG Y, WANG L F, ZHONG F L, et al. Site-oriented design of high-performance halloysite-supported palladium catalysts for methane combustion [J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5636-5647.
|
[33] |
LIU S, WU P X, CHEN M Q, et al. Amphoteric modified vermiculites as adsorbents for enhancing removal of organic pollutants: Bisphenol A and Tetrabromobisphenol A [J]. Environmental Pollution, 2017, 228: 277-286. doi: 10.1016/j.envpol.2017.03.082
|
[34] |
刘晨, 陈元涛, 张炜, 等. KH-550改性埃洛石对水中铀酰离子吸附性能的研究 [J]. 环境科学学报, 2017, 37(1): 243-248.
LIU C, CHEN Y T, ZHANG W, et al. The adsorption of uranyl ion in aqueous solution by halloysite modified KH-550 [J]. Acta Scientiae Circumstantiae, 2017, 37(1): 243-248(in Chinese).
|
[35] |
LI J, YU G W, PAN L J, et al. Study of ciprofloxacin removal by biochar obtained from used tea leaves [J]. Journal of Environmental Sciences, 2018, 73: 20-30. doi: 10.1016/j.jes.2017.12.024
|
[36] |
YAN Z L, FU L J, ZUO X C, et al. Green assembly of stable and uniform silver nanoparticles on 2D silica nanosheets for catalytic reduction of 4-nitrophenol [J]. Applied Catalysis B:Environmental, 2018, 226: 23-30. doi: 10.1016/j.apcatb.2017.12.040
|
[37] |
SUN Y B, SHAO D D, CHEN C L, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline [J]. Environmental Science & Technology, 2013, 47(17): 9904-9910.
|
[38] |
LI F B, LI X Y, CUI P. RETRACTED: Adsorption of U(VI) on magnetic iron oxide/Paecilomyces catenlannulatus composites [J]. Journal of Molecular Liquids, 2018, 252: 52-57. doi: 10.1016/j.molliq.2017.12.136
|
[39] |
JIN Z X, WANG X X, SUN Y B, et al. Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: A combined experimental and theoretical studies [J]. Environmental Science & Technology, 2015, 49(15): 9168-9175.
|
[40] |
WU Y, LUO H J, WANG H. Efficient removal of Congo red from aqueous solutions by surfactant-modified hydroxo aluminum/graphene composites [J]. Separation Science and Technology, 2014, 49(17): 2700-2710. doi: 10.1080/01496395.2014.942741
|
[41] |
李艳, 张证, 孙瑜, 等. 埃洛石对阳离子型和阴离子型染料的吸附研究 [J]. 矿物岩石地球化学通报, 2020, 39(2): 187-192,169.
LI Y, ZHANG Z, SUN Y, et al. A study on the adsorption of cationic and anionic dyes by halloysite [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(2): 187-192,169(in Chinese).
|
[42] |
ABUNOWARA M, SUFIAN S, BUSTAM M A, et al. Experimental and theoretical investigations on kinetic mechanisms of low-pressure CO2 adsorption onto Malaysian coals [J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103828. doi: 10.1016/j.jngse.2021.103828
|
[43] |
周莉, 童裳伦. 碘氧化铋/钨酸铜复合材料的制备及对氟喹诺酮类抗生素的吸附性能 [J]. 环境科学学报, 2021, 41(10): 3993-4002.
ZHOU L, TONG C L. The preparation of BiOI/CuWO4 composite and its adsorption performance for fluoroquinolone antibiotics [J]. Acta Scientiae Circumstantiae, 2021, 41(10): 3993-4002(in Chinese).
|
[44] |
MUNAGAPATI V S, KIM D S. Adsorption of anionic azo dye Congo Red from aqueous solution by Cationic Modified Orange Peel Powder [J]. Journal of Molecular Liquids, 2016, 220: 540-548. doi: 10.1016/j.molliq.2016.04.119
|
[45] |
SONG Y L, SACKEY E A, WANG H, et al. Adsorption of oxytetracycline on kaolinite [J]. PLoS One, 2019, 14(11): e0225335. doi: 10.1371/journal.pone.0225335
|
[46] |
SUN Y Y, YUE Q Y, GAO B Y, et al. Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption [J]. Journal of Colloid and Interface Science, 2012, 368(1): 521-527. doi: 10.1016/j.jcis.2011.10.067
|
[47] |
CHANG P H, LI Z H, JIANG W T, et al. Adsorption and intercalation of tetracycline by swelling clay minerals [J]. Applied Clay Science, 2009, 46(1): 27-36. doi: 10.1016/j.clay.2009.07.002
|
[48] |
YUAN P, SOUTHON P D, LIU Z W, et al. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release [J]. Nanotechnology, 2012, 23(37): 375705. doi: 10.1088/0957-4484/23/37/375705
|