-
抗生素被广泛用于治疗或预防人类和动物疾病,以多种途径进入环境,目前已在多种环境介质中被频繁检出[1-2]。随着其使用量的不断增加,环境中抗生素的浓度也随之提高,已然成为一个主要的全球公共卫生问题[3-4]。吸附法作为去除抗生素的有效方法之一,具有工艺简单、无二次污染、操作方便等特点[5]。然而,常用的吸附剂如金属有机纳米管[6] 、活性炭[7]、石墨烯[8]、碳纳米管[9]和生物碳材料[10]等,存在成本高且不能再生利用的缺点[5,11]。在众多的吸附剂中,黏土和黏土矿物因成本低和产量丰富而被广泛应用[12-13]。埃洛石(halloysite nanotubes, HNTs)是一种天然黏土矿物[14],它的晶体结构是由角共享硅氧四面体和边缘共享铝氧八面体组成的1:1型片层结构[15-16]。HNTs与其他铝硅酸盐矿物的主要区别在于其独特的纳米管状结构。HNTs具有相对较高的比表面积和总孔隙体积,这归因于HNTs结构中具有丰富的孔隙[17],可为吸附提供较多的反应位点。当HNTs用作吸附剂时,对客体分子仅表现出弱的亲和力(离子交换、氢键和范德华力),未修饰的HNTs由于含大量硅氧键,羟基较少,因此氢键作用力较小,且晶体结构中的孔道易因杂质而堵塞,降低了其对污染物的吸附[15-17]。为了提高HNTs的吸附性能,通常对HNTs进行改性。由于HNTs的外表面[18]、内腔表面[19]和层间表面[20]均可被改性,从而为HNTs的修饰提供了丰富的可能性。黏土表面具有天然的负电荷特性,可以通过吸附某些特定的阳离子来改性,迄今采用阳离子表面活性剂修饰黏土的研究较多,且修饰后对染料等有机污染物的吸附固定能力均有提高。而对于用阴阳离子表面活性剂复合改性及其应用的研究较少。因此,用离子表面活性剂对黏土矿物HNTs进行阴阳离子复合改性对抗生素吸附是否有作用,作用机理又是什么,这是一个值得探讨和验证的命题。
土霉素(OTC)作为渭河西安段检出频率最高的四环素类抗生素[21],在自然环境中的出现会影响微生物遗传变异的选择,随着其使用量的不断增加,不可避免地给人体健康和生态环境造成巨大压力[4]。基于此,为了探究阴-阳离子表面活性剂改性黏土矿物吸附水中抗生素的能力,本研究以HNTs为吸附剂,以土霉素(OTC)为吸附对象,采用十六烷基三甲基溴化铵(CTMAB)和十二烷基苯磺酸钠(SDBS)两种离子表面活性剂对HNTs进行改性,制备新型吸附材料阴阳离子改性埃洛石(C-S-HNTs)。考察了吸附剂投加量、吸附时间、初始浓度、温度和溶液pH对OTC在C-S-HNTs上吸附的影响,并对动力学模型、吸附等温模型及热力学模型进行拟合和讨论。结合XRD、FTIR、SEM、BET、zeta电位和XPS等多种表征手段,从吸附效果→表征→修饰机制的角度进行系统研究,目的在于建立起复配修饰黏土的复配修饰机制-表面特征-吸附效应之间的构效关系,为两性改性剂及其复配修饰黏土的理论及应用提供技术储备和数据支持。
埃洛石的复配改性及其对土霉素的吸附性能
Study on the compound modification of halloysite and its adsorption to oxytetracycline
-
摘要: 环境中的抗生素污染引起了全球的广泛关注。埃洛石(HNTs)由于价格低廉、储量丰富和独特的中空纳米管结构,是一种潜在的优良吸附剂。本研究以十六烷基三甲基溴化铵(CTMAB)和十二烷基苯磺酸钠(SDBS)对天然HNTs进行改性,获得阴阳离子改性埃洛石(C-S-HNTs),并应用于水中土霉素(OTC)的吸附。采用XRD、FTIR、SEM、BET、Zeta电位和XPS等表征手段研究了改性前后HNTs的晶体结构和理化性质的变化。采用静态吸附法研究了OTC在C-S-HNTs上的吸附性能和机理。结果表明,C-S-HNTs对OTC的吸附能力显着提高,吸附率提高了50%左右。通过FTIR分析,季铵盐阳离子成功接枝于HNTs表面,改性成功。通过SEM分析,仍然观察到C-S-HNTs的空心管状结构。CTMAB和SDBS成功负载到HNTs表面,但并没有进入HNTs 的层间结构域,保持了HNTs原有的晶体结构。C-S-HNTs对OTC的吸附过程符合准二级动力学模型和Langmuir等温吸附模型。通过Zeta电位分析,C-S-HNTs的吸附容量随pH的增大先增加后减少,在pH=5时,吸附容量达到最高。吸附反应为自发进行的混乱程度增大的吸热反应。OTC在C-S-HNTs上的吸附是分配作用和表面吸附相结合的结果。对天然HNTs进行改性,提高其吸附性能,扩大其应用范围,可为治理新污染物引起的环境问题提供数据支撑。Abstract: Antibiotics pollution in the environment has attracted extensive global attention. Halloysite (HNTs) is a potential excellent adsorbent due to its low price, abundant deposits and unique hollow nanotube structure. In the present study, natural HNTs was modified by cetyl trimethyl ammonium bromide (CTMAB) and sodium dodecyl benzene sulfonate (SDBS) to obtain cation and anion modified halloysite (C-S-HNTs), which was applied to the adsorption of oxytetracycline (OTC) in aqueous solution. XRD, FTIR, SEM, BET, Zeta potential and XPS were used to ascertain the changes in the crystal structure and physicochemical properties of HNTs before and after modification. The static batch adsorption experiments were used to explore the adsorption properties and adsorption mechanism of OTC on C-S-HNTs. The results showed that the adsorption capacity of C-S-HNTs towards OTC increased markedly, and the adsorption rate increased by around 50%. Through FTIR analysis, the quaternary ammonium salt cations were successfully grafted onto the surface of HNTs, and the modification was successful. According to SEM analysis, the hollow tubular structure of C-S-HNTs was still observed. CTMAB and SDBS were successfully loaded onto the surface of HNTs. However, they did not enter the interlayer domain of HNTs, maintaining the original crystal structure of HNTs. The adsorption process accorded with the pseudo-secondary kinetic model and Langmuir isothermal adsorption model. Through Zeta potential analysis, the adsorption capacity of C-S-HNTs first increased and then decreased with the increase of pH. When pH value was 5, the adsorption capacity reached the highest. The adsorption reaction was a spontaneous and endothermic reaction with increasing chaos. The adsorption of OTC on C-S-HNTs was the result of the combination of partitioning and surface adsorption. Modifying natural HNTs would improve their adsorption performance and expand their application range. These findings can provide data support for the treatment of environmental problems caused by emerging contaminants.
-
Key words:
- halloysite /
- modification /
- adsorption /
- oxtetracycline /
- antibiotics
-
表 1 HNTs、C-S-HNTs的比表面积和孔结构参数
Table 1. Surface area and porous structure parameters of the HNTs and C-S-HNTs
样品
Sample比表面积/(m2·g−1)
Specific surface平均孔径/nm
Average pore
diameter孔容/(cm3·g−1)
Total pore volumeHNTs 27.695 14.563 0.104 C-S-HNTs 9.429 42.065 0.00197 表 2 吸附动力学拟合参数
Table 2. Kinetic parameters of adsorption
样品
Sample准一级动力学模型Pseudo-first-order 准二级动力学模型Pseudo-second-order K1/min−1 qe/(mg·g−1) R2 <chi> K2/(g·mg−1min−1) qe/(mg·g−1) R2 <chi> HNTs 0.87 11.76 0.91 1.42 0.10 12.57 0.97 0.44 C-S-HNTs 0.51 15.19 0.92 2.44 0.036 17.028 0.97 0.82 表 3 颗粒内扩散模型拟合参数
Table 3. The fitting parameters of intra-particle diffusion models
样品
Sample拟合公式
Fitting formulaKp/(mg·g-1·min-0.5) R2 HNTs y = 0.1486x + 6.5964 0.1486 0.853 C-S-HNTs y = 0.2348x + 6.5711 0.2348 0.860 表 4 吸附等温线拟合参数
Table 4. Isotherm parameters for adsorption
样品
SamplesLangmuir Freundlich D-R qmax/(mg·g−1) KL R2 <chi> KF 1/n R2 <chi> β R2 E/(kJ·mol−1) HNTs 11.483 0.654 0.993 0.0822 6.547 0.106 0.943 0.702 0.782 0.962 1.228 C-S-HNTs 29.602 0.277 0.999 0.251 7.381 0.289 0.961 18.037 0.754 0.886 1.251 表 5 吸附热力学拟合参数
Table 5. Thermodynamic parameters for adsorption
样品
Samples热力学常数Thermodynamic Constant 温度/K lnK ΔG/(kJ·mol−1) ΔH/(kJ·mol−1) ΔS/(J·mol−1·K−1) HNTs 303 −1.28 1.30 41.65 133.16 313 −0.95 −0.029 323 −0.60 −1.36 C-S- HNTs 303 −0.0027 −0.0069 27.16 89.65 313 0.35 −0.90 323 0.67 −1.80 -
[1] HE L Y, LIU Y S, SU H C, et al. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: Identification of indicator ARGs and correlations with environmental variables [J]. Environmental Science & Technology, 2014, 48(22): 13120-13129. [2] QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment [J]. Environment International, 2018, 110: 160-172. doi: 10.1016/j.envint.2017.10.016 [3] SUN Y B, XU Y, XU Y M, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials [J]. Environmental Pollution, 2016, 208: 739-746. doi: 10.1016/j.envpol.2015.10.054 [4] YU H, ZHU Y F, HUI A P, et al. Removal of antibiotics from aqueous solution by using porous adsorbent templated from eco-friendly Pickering aqueous foams [J]. Journal of Environmental Sciences, 2021, 102: 352-362. doi: 10.1016/j.jes.2020.09.010 [5] 王盈盈, 余静, 曾红杰, 等. 磁性吸附剂CeO2/MZFS去除水中盐酸四环素 [J]. 环境科学学报, 2020, 40(9): 3250-3258. WANG Y Y, YU J, ZENG H J, et al. Adsorption of tetracycline hydrochloride by magnetic adsorbent CeO2/MZFS [J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3250-3258(in Chinese).
[6] JOSEPH L, JUN B M, JANG M, et al. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review [J]. Chemical Engineering Journal, 2019, 369: 928-946. doi: 10.1016/j.cej.2019.03.173 [7] SHEN Y, CHEN B L. Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water [J]. Environmental Science & Technology, 2015, 49(12): 7364-7372. [8] XIONG W P, ZENG G M, YANG Z H, et al. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent [J]. Science of the Total Environment, 2018, 627: 235-244. doi: 10.1016/j.scitotenv.2018.01.249 [9] 侯嫔, 杨晓瑜, 霍燕龙, 等. 超声氧化多壁碳纳米管对水中Ni(Ⅱ)的吸附效能 [J]. 环境工程学报, 2021, 15(7): 2256-2264. doi: 10.12030/j.cjee.202102127 HOU P, YANG X Y, HUO Y L, et al. Adsorption efficiency of Ni(Ⅱ) in water by ultrasonically oxidized multi-walled carbon nanotubes [J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2256-2264(in Chinese). doi: 10.12030/j.cjee.202102127
[10] ZHANG B P, HAN X L, GU P J, et al. Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk [J]. Journal of Molecular Liquids, 2017, 238: 316-325. doi: 10.1016/j.molliq.2017.04.022 [11] SOPHIA A C, LIMA E C. Removal of emerging contaminants from the environment by adsorption [J]. Ecotoxicology and Environmental Safety, 2018, 150: 1-17. doi: 10.1016/j.ecoenv.2017.12.026 [12] 杜明阳, 邹京, 豆俊峰, 等. 钾改性蒙脱石磁性微球对铯的吸附性能 [J]. 环境化学, 2021, 40(3): 779-789. doi: 10.7524/j.issn.0254-6108.2019110202 DU M Y, ZOU J, DOU J F, et al. Adsorption properties of potassium modified montmorillonite magnetic microspheres for cesium [J]. Environmental Chemistry, 2021, 40(3): 779-789(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110202
[13] GULEN B, DEMIRCIVI P. Adsorption properties of flouroquinolone type antibiotic ciprofloxacin into 2: 1 dioctahedral clay structure: Box-Behnken experimental design [J]. Journal of Molecular Structure, 2020, 1206: 127659. doi: 10.1016/j.molstruc.2019.127659 [14] ZHANG B F, YUAN P, GUO H Z, et al. Effect of curing conditions on the microstructure and mechanical performance of geopolymers derived from nanosized tubular halloysite [J]. Construction and Building Materials, 2021, 268: 121186. doi: 10.1016/j.conbuildmat.2020.121186 [15] BEN M'BAREK JEMAÏ M, SDIRI A, ERRAIS E, et al. Characterization of the Ain Khemouda halloysite (western Tunisia) for ceramic industry [J]. Journal of African Earth Sciences, 2015, 111: 194-201. doi: 10.1016/j.jafrearsci.2015.07.014 [16] JAUKOVIĆ V, KRAJIŠNIK D, DAKOVIĆ A, et al. Influence of selective acid-etching on functionality of halloysite-chitosan nanocontainers for sustained drug release [J]. Materials Science and Engineering:C, 2021, 123: 112029. doi: 10.1016/j.msec.2021.112029 [17] YUAN P, TAN D Y, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes: Recent research advances and future prospects [J]. Applied Clay Science, 2015, 112/113: 75-93. doi: 10.1016/j.clay.2015.05.001 [18] CHANG P R, XIE Y F, WU D L, et al. Amylose wrapped halloysite nanotubes [J]. Carbohydrate Polymers, 2011, 84(4): 1426-1429. doi: 10.1016/j.carbpol.2011.01.038 [19] JOO Y, JEON Y, LEE S U, et al. Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes (HNT-COOH) [J]. The Journal of Physical Chemistry C, 2012, 116(34): 18230-18235. doi: 10.1021/jp3038945 [20] MATUSIK J, WŚCISŁO A. Enhanced heavy metal adsorption on functionalized nanotubular halloysite interlayer grafted with aminoalcohols [J]. Applied Clay Science, 2014, 100: 50-59. doi: 10.1016/j.clay.2014.06.034 [21] 王嘉玮. 渭河西安段表层水体中抗生素的分布特征及生态风险评价[D]. 西安: 西安理工大学, 2018. WANG J W. Distribution characteristics and ecological risk assessment of antibiotics in surface water of xi’an section of Weihe river[D]. Xi’an: Xi’an University of Technology, 2018(in Chinese).
[22] COSTA R F, FIRMANO R F, COLZATO M, et al. Sulfur speciation in a tropical soil amended with lime and phosphogypsum under long-term no-tillage system [J]. Geoderma, 2022, 406: 115461. doi: 10.1016/j.geoderma.2021.115461 [23] ZHANG W, WANG L, SU Y G, et al. Indium oxide/Halloysite composite as highly efficient adsorbent for tetracycline Removal: Key roles of hydroxyl groups and interfacial interaction [J]. Applied Surface Science, 2021, 566: 150708. doi: 10.1016/j.apsusc.2021.150708 [24] WU J Y, WANG Y H, WU Z X, et al. Adsorption properties and mechanism of sepiolite modified by anionic and cationic surfactants on oxytetracycline from aqueous solutions [J]. Science of the Total Environment, 2020, 708: 134409. doi: 10.1016/j.scitotenv.2019.134409 [25] ZHANG Y G, BAI L B, CHENG C, et al. A novel surface modification method upon halloysite nanotubes: A desirable cross-linking agent to construct hydrogels [J]. Applied Clay Science, 2019, 182: 105259. doi: 10.1016/j.clay.2019.105259 [26] FAKHRUDDIN K, HASSAN R, KHAN M U A, et al. Halloysite nanotubes and halloysite-based composites for biomedical applications [J]. Arabian Journal of Chemistry, 2021, 14(9): 103294. doi: 10.1016/j.arabjc.2021.103294 [27] CAN M, DEMIRCI S, YILDRIM Y, et al. Modification of halloysite clay nanotubes with various alkyl halides, and their characterization, blood compatibility, biocompatibility, and genotoxicity [J]. Materials Chemistry and Physics, 2021, 259: 124013. doi: 10.1016/j.matchemphys.2020.124013 [28] SZCZEPANIK B, SŁOMKIEWICZ P, GARNUSZEK M, et al. The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies [J]. Journal of Molecular Structure, 2015, 1084: 16-22. doi: 10.1016/j.molstruc.2014.12.008 [29] SHANG S, MA X, YUAN B H, et al. Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene [J]. Composites Part B:Engineering, 2019, 177: 107371. doi: 10.1016/j.compositesb.2019.107371 [30] CHENG H F, FROST R L, YANG J, et al. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2010, 77(5): 1014-1020. doi: 10.1016/j.saa.2010.08.039 [31] TAHERIAN S, RAHMANI S, SHARIF A, et al. In-situ polymerization of aliphatic-aromatic polyamide nanocomposites in the presence of Halloysite nanotubes [J]. Polymers for Advanced Technologies, 2019, 30(3): 538-544. doi: 10.1002/pat.4489 [32] ZHENG Y, WANG L F, ZHONG F L, et al. Site-oriented design of high-performance halloysite-supported palladium catalysts for methane combustion [J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5636-5647. [33] LIU S, WU P X, CHEN M Q, et al. Amphoteric modified vermiculites as adsorbents for enhancing removal of organic pollutants: Bisphenol A and Tetrabromobisphenol A [J]. Environmental Pollution, 2017, 228: 277-286. doi: 10.1016/j.envpol.2017.03.082 [34] 刘晨, 陈元涛, 张炜, 等. KH-550改性埃洛石对水中铀酰离子吸附性能的研究 [J]. 环境科学学报, 2017, 37(1): 243-248. LIU C, CHEN Y T, ZHANG W, et al. The adsorption of uranyl ion in aqueous solution by halloysite modified KH-550 [J]. Acta Scientiae Circumstantiae, 2017, 37(1): 243-248(in Chinese).
[35] LI J, YU G W, PAN L J, et al. Study of ciprofloxacin removal by biochar obtained from used tea leaves [J]. Journal of Environmental Sciences, 2018, 73: 20-30. doi: 10.1016/j.jes.2017.12.024 [36] YAN Z L, FU L J, ZUO X C, et al. Green assembly of stable and uniform silver nanoparticles on 2D silica nanosheets for catalytic reduction of 4-nitrophenol [J]. Applied Catalysis B:Environmental, 2018, 226: 23-30. doi: 10.1016/j.apcatb.2017.12.040 [37] SUN Y B, SHAO D D, CHEN C L, et al. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline [J]. Environmental Science & Technology, 2013, 47(17): 9904-9910. [38] LI F B, LI X Y, CUI P. RETRACTED: Adsorption of U(VI) on magnetic iron oxide/Paecilomyces catenlannulatus composites [J]. Journal of Molecular Liquids, 2018, 252: 52-57. doi: 10.1016/j.molliq.2017.12.136 [39] JIN Z X, WANG X X, SUN Y B, et al. Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: A combined experimental and theoretical studies [J]. Environmental Science & Technology, 2015, 49(15): 9168-9175. [40] WU Y, LUO H J, WANG H. Efficient removal of Congo red from aqueous solutions by surfactant-modified hydroxo aluminum/graphene composites [J]. Separation Science and Technology, 2014, 49(17): 2700-2710. doi: 10.1080/01496395.2014.942741 [41] 李艳, 张证, 孙瑜, 等. 埃洛石对阳离子型和阴离子型染料的吸附研究 [J]. 矿物岩石地球化学通报, 2020, 39(2): 187-192,169. LI Y, ZHANG Z, SUN Y, et al. A study on the adsorption of cationic and anionic dyes by halloysite [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(2): 187-192,169(in Chinese).
[42] ABUNOWARA M, SUFIAN S, BUSTAM M A, et al. Experimental and theoretical investigations on kinetic mechanisms of low-pressure CO2 adsorption onto Malaysian coals [J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103828. doi: 10.1016/j.jngse.2021.103828 [43] 周莉, 童裳伦. 碘氧化铋/钨酸铜复合材料的制备及对氟喹诺酮类抗生素的吸附性能 [J]. 环境科学学报, 2021, 41(10): 3993-4002. ZHOU L, TONG C L. The preparation of BiOI/CuWO4 composite and its adsorption performance for fluoroquinolone antibiotics [J]. Acta Scientiae Circumstantiae, 2021, 41(10): 3993-4002(in Chinese).
[44] MUNAGAPATI V S, KIM D S. Adsorption of anionic azo dye Congo Red from aqueous solution by Cationic Modified Orange Peel Powder [J]. Journal of Molecular Liquids, 2016, 220: 540-548. doi: 10.1016/j.molliq.2016.04.119 [45] SONG Y L, SACKEY E A, WANG H, et al. Adsorption of oxytetracycline on kaolinite [J]. PLoS One, 2019, 14(11): e0225335. doi: 10.1371/journal.pone.0225335 [46] SUN Y Y, YUE Q Y, GAO B Y, et al. Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption [J]. Journal of Colloid and Interface Science, 2012, 368(1): 521-527. doi: 10.1016/j.jcis.2011.10.067 [47] CHANG P H, LI Z H, JIANG W T, et al. Adsorption and intercalation of tetracycline by swelling clay minerals [J]. Applied Clay Science, 2009, 46(1): 27-36. doi: 10.1016/j.clay.2009.07.002 [48] YUAN P, SOUTHON P D, LIU Z W, et al. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release [J]. Nanotechnology, 2012, 23(37): 375705. doi: 10.1088/0957-4484/23/37/375705