[1] 李书鹏, 刘鹏, 杜晓明, 等. 采用零价铁−缓释碳修复氯代烃污染地下水的中试研究 [J]. 环境工程, 2013, 31(4): 53-58. LI S P, LIU P, DU X M, et al. A field pilot test for restoring chlorohydrocarbon contaminated groundwater using ZVI&controlled releasing carbon material [J]. Environmental Engineering, 2013, 31(4): 53-58(in Chinese).
[2] 宋震宇, 杨伟, 王文茜, 等. 氯代烃污染地下水修复技术研究进展 [J]. 环境科学与管理, 2014, 39(4): 95-99. doi: 10.3969/j.issn.1673-1212.2014.04.024 SONG Z Y, YANG W, WANG W Q, et al. Research progress on restoring groundwater contaminated by chlorinated hydrocarbon [J]. Environmental Science and Management, 2014, 39(4): 95-99(in Chinese). doi: 10.3969/j.issn.1673-1212.2014.04.024
[3] 苏安琪, 韩璐, 晏井春, 等. 基于保护健康和水环境的氯代烃类污染场地地下水风险评估 [J]. 环境工程, 2018, 36(7): 138-143. SU A Q, HAN L, YAN J C, et al. Risk assessment of chlorinated solvents in groundwater based on health and water environment [J]. Environmental Engineering, 2018, 36(7): 138-143(in Chinese).
[4] 宋易南, 侯德义, 赵勇胜, 等. 京津冀化工场地地下水污染修复治理对策研究 [J]. 环境科学研究, 2020, 33(06): 1345-1356. SONG Y N, HOU D Y, ZHAO Y S, et al. Remediation strategies for contaminated groundwater at chemical industrial sites in the Beijing-Tianjin-Hebei region [J]. Research of Environmental Sciences, 2020, 33(06): 1345-1356(in Chinese).
[5] LIN F, ZHANG Z, LI N, et al. How to achieve complete elimination of Cl-VOCs: A critical review on byproducts formation and inhibition strategies during catalytic oxidation [J]. Chemical Engineering Journal, 2021, 404: 126534. doi: 10.1016/j.cej.2020.126534
[6] 钱翌, 岳飞飞, 褚衍洋. 三氯乙烯环境污染修复技术研究进展 [J]. 环境化学, 2012, 31(9): 1335-1343. QIAN Y, YUE F, CHU Y. Advances in environmental remediation technologies for trichloroethylene pollution [J]. Environmental Chemistry, 2012, 31(9): 1335-1343(in Chinese).
[7] GAFNI A, SIEBNER H, BERNSTEIN A. Potential for co-metabolic oxidation of TCE and evidence for its occurrence in a large-scale aquifer survey [J]. Water Research, 2020, 171: 115431. doi: 10.1016/j.watres.2019.115431
[8] 李明, 孙勇, 顾梦斌, 等. 柠檬酸强化纳米零价铁活化过硫酸钠体系降解水溶液中的三氯乙烯 [J]. 环境工程学报, 2020, 14(3): 569-578. doi: 10.12030/j.cjee.201905182 LI M, SUN Y, GU M B, et al. Enhanced trichloroethylene degradation in aqueous solution by citric acid and nanoscale zero-valent iron activated sodium persulfate system [J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 569-578(in Chinese). doi: 10.12030/j.cjee.201905182
[9] USEPA. Search superfund site information[DB/OL]. 2020-06-30[2020-6-30].https://cumulis.epa.gov/supercpad/cursites /srchsites. cfm.
[10] 吕言臣, 李明, 章长松, 等. 纳米零价铁协同Fe(II)活化过碳酸钠降解含吐温-80水体中的三氯乙烯[J]. 环境工程学报, 2021, 15(2): 688 - 698. LU Y C, LI M, ZHANG C S, et al. Degradation of trichloroethylene in aqueous solution bynanoscale zero-valent iron and Fe(II) synergistically activated sodium percarbonate in the presence of surfactant tween-80 [J]. Chinese Journal of Environmental Engineering, 2021, 15(02): 688 - 698(in Chinese)
[11] XIN J, FAN S, YUAN M, et al. Effects of co-existing nitrate on TCE removal by mZVI under different pollution load scenarios: Kinetics, electron efficiency and mechanisms[J]. Science of the Total Environment. 2020, 716: 137111.
[12] 韩文亮, 陈海明, 陈兴童. 改性零价铁降解多溴二苯醚的研究进展 [J]. 环境化学, 2017, 36(7): 1474-1483. doi: 10.7524/j.issn.0254-6108.2017.07.2016110801 HAN W, CHEN H, CHEN X. Research progress on the degradation of polybrominated diphenyl ethers by modified zero valent iron [J]. Environmental Chemistry, 2017, 36(7): 1474-1483(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.07.2016110801
[13] DEVOR R, CARVALHO-KNIGHTON K, AITKEN B, et al. Mechanism of the degradation of individual PCB congeners using mechanically alloyed Mg/Pd in methanol [J]. Chemosphere, 2009, 76(6): 761-766. doi: 10.1016/j.chemosphere.2009.05.007
[14] ZHENG Z, YUAN S, LIU Y, et al. Reductive dechlorination of hexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant [J]. Journal of Hazardous Materials, 2009, 170(2/3): 895-901.
[15] YANG X, ZHANG C, LIU F, et al. Diversity in the species and fate of chlorine during TCE reduction by two nZVI with non-identical anaerobic corrosion mechanism[J], Chemosphere. 2019, 230: 230-238.
[16] LEE G, PARK J, HARVEY O R. Reduction of Chromium(VI) mediated by zero-valent magnesium under neutral pH conditions [J]. Water Research, 2013, 47(3): 1136-1146. doi: 10.1016/j.watres.2012.11.028
[17] AGARWAL S, AL-ABED S R, DIONYSIOU D D. Chapter 25 - magnesium-based corrosion nano-cells for reductive transformation of contaminants[M]. Oxford: William Andrew Publishing, 2014: 395-403.
[18] MIRABI M, GHADERI E, RASOULI SADABAD H. Nitrate reduction using hybrid system consisting of zero valent magnesium powder/activated carbon (Mg0/AC) from water [J]. Process Safety and Environmental Protection, 2017, 111: 627-634. doi: 10.1016/j.psep.2017.08.035
[19] AGARWAL S, AL-ABED S R, DIONYSIOU D D. Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs [J]. Environmental Science & Technology, 2007, 41(10): 3722-3727.
[20] PATEL U, SURESH S. Dechlorination of chlorophenols by magnesium–silver bimetallic system [J]. Journal of Colloid and Interface Science, 2006, 299(1): 249-259. doi: 10.1016/j.jcis.2006.01.047
[21] GARBOU A M, LIU M, ZOU S, et al. Degradation kinetics of hexachlorobenzene over zero-valent magnesium/graphite in protic solvent system and modeling of degradation pathways using density functional theory [J]. Chemosphere, 2019, 222: 195-204. doi: 10.1016/j.chemosphere.2019.01.134
[22] ILERI B, AYYILDIZ O, APAYDIN O. Ultrasound-assisted activation of zero-valent magnesium for nitrate denitrification: Identification of reaction by-products and pathways [J]. Journal of Hazardous Materials, 2015, 292: 1-8. doi: 10.1016/j.jhazmat.2015.03.004
[23] ELIE M R, CLAUSEN C A, GEIGER C L. Reduction of benzo[a]pyrene with acid-activated magnesium metal in ethanol: A possible application for environmental remediation [J]. Journal of Hazardous Materials, 2012, 203/204: 77-85. doi: 10.1016/j.jhazmat.2011.11.089
[24] MOGHARBEL A T, YESTREBSKY C L. Dechlorination comparison of octachlorodibenzofuran over ball-milled zero-valent magnesium with and without activated carbon in different solvent systems [J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 102950. doi: 10.1016/j.jece.2019.102950
[25] GARBOU A M, CLAUSEN C A, YESTREBSKY C L. Comparative study for the removal and destruction of pentachlorophenol using activated magnesium treatment systems [J]. Chemosphere, 2017, 166: 267-274. doi: 10.1016/j.chemosphere.2016.09.139
[26] ELIE M R, CLAUSEN C A, YESTREBSKY C L. Reductive degradation of oxygenated polycyclic aromatic hydrocarbons using an activated magnesium/co-solvent system [J]. Chemosphere, 2013, 91(9): 1273-1280. doi: 10.1016/j.chemosphere.2013.02.031
[27] HUOT J, LIANG G, SCHULZ R. Mechanically alloyed metal hydride systems[J]. Applied Physics A-Materials Science & Processing. 2001, 72(2): 187-195.
[28] GUAN X, DU X, LIU M, et al. Enhanced trichloroethylene dechlorination by carbon-modified zero-valent iron: Revisiting the role of carbon additives [J]. Journal of Hazardous Materials, 2020, 394: 122564. doi: 10.1016/j.jhazmat.2020.122564
[29] 于亚梅, 沈雁文, 朱南文, 等. 生物炭和石墨的电化学性质对剩余污泥厌氧消化产甲烷的影响 [J]. 环境工程学报, 2020, 14(3): 807-820. doi: 10.12030/j.cjee.201908046 YU Y M, SHEN Y W, ZHU N W, et al. Effect of electrochemical properties of biochar and graphite on methane production in anaerobic digestion of excess activated sludge [J]. Chinese Journal of Environmental Engineering, 2020, 14(3): 807-820(in Chinese). doi: 10.12030/j.cjee.201908046
[30] KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant Biomass-Derived black carbon (Biochar) [J]. Environmental Science & Technology, 2014, 48(10): 5601-5611.
[31] REN T, YANG S, WU S, et al. High-energy ball milling enhancing the reactivity of microscale zero-valent aluminum toward the activation of persulfate and the degradation of trichloroethylene [J]. Chemical Engineering Journal, 2019, 374: 100-111. doi: 10.1016/j.cej.2019.05.172
[32] SONG J, KIM H, KIM H, et al. Refinement behavior of coarse magnesium powder by high energy ball milling (HEBM) [J]. Journal of Korean Powder Metallurgy Institute, 2010, 17(4): 302-311. doi: 10.4150/KPMI.2010.17.4.302
[33] ELIE M R, WILLIAMSON R E, CLAUSEN C A, et al. Application of a magnesium/co-solvent system for the degradation of polycyclic aromatic hydrocarbons and their oxygenated derivatives in a spiked soil [J]. Chemosphere, 2014, 117: 793-800. doi: 10.1016/j.chemosphere.2014.10.042
[34] LIU M, WANG Y, CHEN L, et al. Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution [J]. ACS Applied Materials & Interfaces, 2015, 7(15): 7961-7969.
[35] LEE G, PARK J. Reaction of zero-valent magnesium with water: Potential applications in environmental remediation [J]. Geochimica Et Cosmochimica Acta, 2013, 102: 162-174. doi: 10.1016/j.gca.2012.10.031
[36] SICILIANO A, CURCIO G M, LIMONTI C. Chemical denitrification with Mg0 particles in column systems [J]. Sustainability (Basel, Switzerland), 2020, 12(7): 2984.
[37] REN Y, KANG S, ZHU J. Mechanochemical degradation of hexachlorobenzene using Mg/Al2O3 as additive [J]. Journal of Material Cycles and Waste Management, 2015, 17(4): 607-615. doi: 10.1007/s10163-015-0398-3
[38] SIVAKUMAR M, DASGUPTA A, GHOSH C, et al. Optimisation of high energy ball milling parameters to synthesize oxide dispersion strengthened Alloy 617 powder and its characterization [J]. Advanced Powder Technology, 2019, 30(10): 2320-2329. doi: 10.1016/j.apt.2019.07.014
[39] GU Y, GONG L, QI J, et al. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: Experimental evidences and mechanism[J]. Water Research. 2019, 159: 233-241.
[40] 李威, 冯妍卉, 陈阳, 等. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析 [J]. 物理学报, 2012, 61(13): 338-347. LI W, FENG Y H, CHEN Y, et al. Research on the influences of point defects on the thermal conductivity of carbon nanotube by simulation with orthogonal array testing strategy [J]. Acta Physica Sinica, 2012, 61(13): 338-347(in Chinese).
[41] 黄晓鹏, 吴劲锋, 万芳新, 等. 环模材料抗植物磨料磨损激光淬火工艺参数优化 [J]. 材料科学与工程学报, 2014, 32(2): 206-210. HUANG X P, WU J F, WAN F X, et al. Process parameter optimization of laser quenching to circular mould material against plant abrasive [J]. Journal of Materials Science and Engineering, 2014, 32(2): 206-210(in Chinese).
[42] 李学问. 机械球磨制备超细晶Mg-3Al-Zn合金及其组织性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. LI X W. Study on the removal of typical chlorinated hydrocarbons in groundwater by aeration and adsorption[D]. Harbin Institute of Technology, 2010 (in Chinese).
[43] 戴乐阳, 陈清林, 林少芬, 等. 高能球磨中促进粉体细化的主要因素研究 [J]. 材料导报, 2009, 23(22): 59-61,69. doi: 10.3321/j.issn:1005-023X.2009.22.018 HONG W Z, LI Y M, ZHANG LN, et al. Study on the main promotion factors of powder refinement in high-energy ball milling [J]. Materials Reports, 2009, 23(22): 59-61,69(in Chinese). doi: 10.3321/j.issn:1005-023X.2009.22.018
[44] ZULLO F M, LIU M, ZOU S, et al. Mechanistic and computational studies of PCB 151 dechlorination by zero valent magnesium for field remediation optimization [J]. Journal of Hazardous Materials, 2017, 337: 55-61. doi: 10.1016/j.jhazmat.2017.04.057
[45] PATEL U, SURESH S. Dechlorination of chlorophenols using magnesium-palladium bimetallic system [J]. Journal of Hazardous Materials, 2007, 147(1-2): 431-438. doi: 10.1016/j.jhazmat.2007.01.029
[46] AYYILDIZ O, ACAR E, ILERI B. Sonocatalytic reduction of hexavalent chromium by metallic magnesium particles[J]. Water, Air, & Soil Pollution, 2016, 227(10).
[47] LIU Y, MAJETICH S A, TILTON R D, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties [J]. Environmental Science & Technology, 2005, 39(5): 1338-1345.
[48] SCHRICK B, BLOUGH J L, JONES A D, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles [J]. Chemistry of Materials, 2002, 14(12): 5140-5147. doi: 10.1021/cm020737i
[49] GU Y, WANG B, HE F, et al. Mechanochemically sulfidated microscale zero valent iron: Pathways, kinetics, mechanism, and efficiency of trichloroethylene dechlorination [J]. Environmental Science & Technology, 2017, 51(21): 12653-12662.
[50] BAE S, LEE W. Influence of Riboflavin on Nanoscale Zero-Valent Iron Reactivity during the Degradation of Carbon Tetrachloride [J]. Environmental Science & Technology, 2014, 48(4): 2368-2376.
[51] PATEL U D, SURESH S. Effects of solvent, pH, salts and resin fatty acids on the dechlorination of pentachlorophenol using magnesium–silver and magnesium–palladium bimetallic systems [J]. Journal of Hazardous Materials, 2008, 156(1-3): 308-316. doi: 10.1016/j.jhazmat.2007.12.021
[52] AGARWAL S, AL-ABED S R, DIONYSIOU D D. Impact of organic solvents and common anions on 2-chlorobiphenyl dechlorination kinetics with Pd/Mg [J]. Applied Catalysis B:Environmental, 2009, 92(1-2): 17-22. doi: 10.1016/j.apcatb.2009.07.029
[53] YANG Y, SCENINI F, CURIONI M. A study on magnesium corrosion by real-time imaging and electrochemical methods: Relationship between local processes and hydrogen evolution [J]. Electrochimica Acta, 2016, 198: 174-184. doi: 10.1016/j.electacta.2016.03.043
[54] TAUB I A, ROBERTS W, LAGAMBINA S, et al. Mechanism of dihydrogen formation in the magnesium-water reaction [J]. The Journal of Physical Chemistry A, 2002, 106(35): 8070-8078. doi: 10.1021/jp0143847
[55] XIN Y, HUO K, TAO H, et al. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment [J]. Acta Biomaterialia, 2008, 4(6): 2008-2015. doi: 10.1016/j.actbio.2008.05.014
[56] YANG X, ZHANG C, LIU F, et al. Groundwater geochemical constituents controlling the reductive dechlorination of TCE by nZVI: Evidence from diverse anaerobic corrosion mechanisms of nZVI [J]. Chemosphere, 2021, 262: 127707. doi: 10.1016/j.chemosphere.2020.127707
[57] BEGUM A, GAUTAM S K. Dechlorination of endocrine disrupting chemicals using Mg0/ZnCl2 bimetallic system [J]. Water Research, 2011, 45(7): 2383-2391. doi: 10.1016/j.watres.2011.01.017