[1] |
HE K, BLANEY L. Systematic optimization of an SPE with HPLC-FLD method for fluoroquinolone detection in wastewater [J]. Journal of Hazardous Materials, 2015, 282: 96-105. doi: 10.1016/j.jhazmat.2014.08.027
|
[2] |
LUO B, XU D, LI D, et al. Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline [J]. ACS Applied Materials & Interfaces, 2015, 7(31): 17061-17069.
|
[3] |
ZHU X, LIU Y, QIAN F, et al. Preparation of magnetic porous carbon from waste hydrochar bysimultaneous activation and magnetization for tetracycline removal [J]. Bioresource Technology, 2014, 154: 209-214. doi: 10.1016/j.biortech.2013.12.019
|
[4] |
DAI Q, ZHOU J, WENG M, et al. Electrochemical oxidation metronidazole with Co modified PbO2 electrode: Degradation and mechanism [J]. Separation and Purification Technology, 2016, 166: 109-116. doi: 10.1016/j.seppur.2016.04.028
|
[5] |
OBREGON S, HERNANDEZ-URESTI D B, VAZQUEZ A, et al. Electrophoretic deposition of PbMoO4 nanoparticles for photocatalytic degradation of tetracycline [J]. Applied Surface Science, 2018, 457: 501-507. doi: 10.1016/j.apsusc.2018.06.203
|
[6] |
REN X, ZENG G, TANG L, et al. Sorption, transport and biodegradation - An insight into bioavailability of persistent organic pollutants in soil [J]. Science of the Total Environment, 2018, 610: 1154-1163.
|
[7] |
LIANG J, YANG Z, TANG L, et al. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost [J]. Chemosphere, 2017, 181: 281-288. doi: 10.1016/j.chemosphere.2017.04.081
|
[8] |
WU J, ZHAO H, CHEN R, et al. Adsorptive removal of trace sulfonamide antibiotics by water-dispersible magnetic reduced graphene oxide-ferrite hybrids from wastewater [J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2016, 1029: 106-112.
|
[9] |
LI X, WANG Z, LI Q, et al. Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption [J]. Chemical Engineering Journal, 2015, 273: 630-637. doi: 10.1016/j.cej.2015.03.104
|
[10] |
ROSTAMIAN R, BEHNEJAD H. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets [J]. Ecotoxicology and Environmental Safety, 2018, 147: 117-123. doi: 10.1016/j.ecoenv.2017.08.019
|
[11] |
LAI K C, LEE L Y, HIEW B Y Z, et al. Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: Review on ice-templating method and adsorption mechanisms [J]. Journal of Environmental Sciences, 2019, 79: 174-199. doi: 10.1016/j.jes.2018.11.023
|
[12] |
FILIP J, ANDICSOVA-ECKSTEIN A, VIKARTOVSKA A, et al. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density [J]. Biosensors & Bioelectronics, 2017, 89: 384-389.
|
[13] |
HUANG G, SONG X, CHEN Y, et al. Study of the effect of chemical composition on the surface wettability of three-dimensional graphene foams [J]. Chinese Chemical Letters, 2020, 31(7): 1839-1842. doi: 10.1016/j.cclet.2020.02.053
|
[14] |
ZHOU G, YE Z, SHI W, et al. Applications of three dimensional graphene and its composite materials [J]. Progress in Chemistry, 2014, 26(6): 950-960.
|
[15] |
ZHANG J, WEN C Y, LI Q, et al. Electro-enhanced solid-phase microextraction of bisphenol A from thermal papers using a three-dimensional graphene coated fiber [J]. Journal of Chromatography A, 2019, 1585: 27-33. doi: 10.1016/j.chroma.2018.11.063
|
[16] |
LOSURDO M, GIANGREGORIO M M, CAPEZZUTO P, et al. Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure [J]. Physical Chemistry Chemical Physics, 2011, 13(46): 20836-20843. doi: 10.1039/c1cp22347j
|
[17] |
MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide [J]. ACS Nano, 2010, 4(8): 4806-4814. doi: 10.1021/nn1006368
|
[18] |
ZHANG X, SUI Z, XU B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources [J]. Journal of Materials Chemistry, 2011, 21(18): 6494-6497. doi: 10.1039/c1jm10239g
|
[19] |
张浩, 沈宇, 田丹碧, 等. 多壳层空心MOFs材料对水体中抗生素的高效吸附 [J]. 科学通报, 2019, 64(34): 3632-3639.
ZHANG H, CHEN Y, TIAN D. B, et al. Multi-shelled hollow metal-organic frameworks for optimizing the adsorption performance of antibiotic [J]. Chinese Science Bulletin, 2019, 64(34): 3632-3639(in Chinese).
|
[20] |
ZHANG X, SHEN J, ZHUO N, et al. Interactions between antibiotics and graphene-based materials in water: A comparative experimental and theoretical investigation [J]. ACS Applied Materials & Interfaces, 2016, 8(36): 24273-24280.
|
[21] |
齐梦雨, 戴媛媛, 张莹, 等. 氧化石墨烯/适配体吸附剂对四环素类抗生素的吸附性能研究 [J]. 浙江师范大学学报(自然科学版), 2020, 43(02): 168-175.
QI M Y, DAI Y Y, ZHANG Y, et al. Adsorption properties of graphene oxide/aptamer adsorbents for tetracycline antibiotics [J]. Journal of Zhejiang Normal University(Natural Sciences), 2020, 43(02): 168-175(in Chinese).
|
[22] |
ZHUANG Y, YU F, MA J, et al. Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel [J]. Journal of Colloid and Interface Science, 2017, 507: 250-259. doi: 10.1016/j.jcis.2017.07.033
|
[23] |
祝林, 许子牧. GO/TiO2复合纳米材料对四环素的吸附作用及其再生效果研究 [J]. 安徽农业大学学报, 2019, 46(6): 995-1002.
ZHU L, XU Z M. Adsorption performance of tetracycline by GO/TiO2 composites and their regeneration capacity [J]. Journal of Anhui Agricultural University, 2019, 46(6): 995-1002(in Chinese).
|
[24] |
连丽丽, 葛佳慧, 杨旭, 等. 多孔NiO的制备及其对水中四环素的吸附 [J]. 分析测试学报, 2020, 39(8): 1006-1011. doi: 10.3969/j.issn.1004-4957.2020.08.010
LIAN L L, GE J H, YANG X, et al. Preparation of Porous NiO and Its Adsorption for Tetracycline in Water [J]. Journal of Instrumental Analysis, 2020, 39(8): 1006-1011(in Chinese). doi: 10.3969/j.issn.1004-4957.2020.08.010
|
[25] |
NODEH H R, SERESHTI H. Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media [J]. RSCAdvances, 2016, 6(92): 89953-89965. doi: 10.1039/C6RA18341G
|
[26] |
HUANG B, LIU Y, LI B, et al. Effect of Cu(Ⅱ) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-Chitosan/graphene oxide nanocomposite [J]. Carbohydrate Polymers, 2017, 157: 576-585. doi: 10.1016/j.carbpol.2016.10.025
|