[1] NISSENBAUM A. Minor and trace elements in Dead Sea water [J]. Chemical Geology, 1977, 19(1/4): 99-111.
[2] TAS E, PELEG M, MATVEEV V, et al. Frequency and extent of bromine oxide formation over the Dead Sea [J]. Journal of Geophysical Research Atmospheres , 2005, 110(D11): D11304. doi: 10.1029/2004JD005665
[3] HEBESTREIT K, STUTZ J, ROSEN D, et al. First DOAS measurements of tropospheric bromine oxide in mid latitudes [J]. Science, 1999, 283(5398): 55-57. doi: 10.1126/science.283.5398.55
[4] SIMPSON W R, von GLASOW R, RIEDEL K, et al. Halogens and their role in polar boundary-layer ozone depletion [J]. Atmospheric Chemistry and Physics, 2007, 7(16): 4375-4418. doi: 10.5194/acp-7-4375-2007
[5] MATVEEV V, PELEG M, ROSEN D,et al. Bromine oxide-ozone interaction over the Dead Sea [J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D10): 10375-10387. doi: 10.1029/2000JD900611
[6] BARRIE L A. Arctic air pollution: An overview of current knowledge [J]. Atmospheric Environment, 1986, 20(4): 643-663.
[7] OLTMANS S J, KOMHYR W D. Surface ozone distributions and variations from 1973-1984: Measurements at the NOAA Geophysical Monitoring for Climate Change Baseline Observatories [J]. Journal of Geophysical Research Atmospheres, 1986, 91(D4): 5229-5236. doi: 10.1029/JD091iD04p05229
[8] OLTMANS S J, SCHNELL R C, SHERIDAN P J, et al. Seasonal surface ozone and filterable bromine relationship in the high Arctic [J]. Atmospheric Environment, 1989, 23(11): 2431-2441. doi: 10.1016/0004-6981(89)90254-0
[9] BERG W W, SPERRY P D, RAHN K A, et al. Atmospheric bromine in the Arctic [J]. Journal of Geophysical Research:Atmospheres, 1983, 88(C11): 6719-6736. doi: 10.1029/JC088iC11p06719
[10] STURGES W T. Excess particulate and gaseous bromine at a remote coastal location [J]. Atmospheric Environment, 1990, 24(1): 167-171. doi: 10.1016/0960-1686(90)90452-S
[11] BARRIE L A, BOTTENHEIM J W, SCHNELL R C, et al. Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere [J]. Nature, 1988, 334(6178): 138-141. doi: 10.1038/334138a0
[12] FAN S M, JACOB D J. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols [J]. Nature, 1992, 359(6395): 522-524. doi: 10.1038/359522a0
[13] MCCONNELL J C, HENDERSON G S, BARRIE L, et al. Photochemical bromine production implicated in Arctic boundary-layer ozone depletion [J]. Nature, 1992, 355(6356): 150-152. doi: 10.1038/355150a0
[14] HAUSMANN M, PLATT U. Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992 [J]. Journal of Geophysical Research Atmospheres, 1994, 99(D12): 25399-25413. doi: 10.1029/94JD01314
[15] BOTTENHEIM J W, BARRIE L A, ATLAS E, et al. Depletion of lower tropospheric ozone during Arctic spring: The Polar Sunrise Experiment 1988 [J]. Journal of Geophysical Research, 1990, 95(D11): 18555-18568. doi: 10.1029/JD095iD11p18555
[16] YOKOUCHI Y, AKIMOTO H, BARRIE L A, et al. Serial gas chromatographic/mass spectrometric measurements of some volatile organic-compounds in the Arctic atmosphere during the 1992 Polar Sunrise Experiment [J]. Journal of Geophysical Research:Atmospheres, 1994, 99(D12): 25379-25389. doi: 10.1029/94JD00227
[17] SIMPSON W R, KING M D, BEINE H J, et al. Atmospheric photolysis rate coefficients during the Polar Sunrise Experiment ALERT2000 [J]. Atmospheric Environment, 2002, 36(15/16): 2471-2480.
[18] PLATT U , LEHRER E . ARCTOC final report (Arctic tropospheric ozone chemistry NO. EVSV-CT93-0318) [R]. European Community, 1997.
[19] TANG T, MCCONNELL J C. Autocatalytic release of bromine from Arctic snow pack during polar sunrise [J]. Geophysical Research Letters, 1996, 23(19): 2633-2636. doi: 10.1029/96GL02572
[20] WENNBERG P. Bromine explosion [J]. Nature, 1999, 397(6717): 299-301.
[21] HALFACRE J W, KNEPP T N, SHEPSON P B, et al. Temporal and spatial characteristics of ozone depletion events from measurements in the Arctic [J]. Atmospheric Chemistry and Physics, 2014, 14(10): 4875-4894. doi: 10.5194/acp-14-4875-2014
[22] MORIN S, HOENNINGER G, STAEBLER R M, et al. A high time resolution study of boundary layer ozone chemistry and dynamics over the Arctic Ocean near Alert, Nunavut [J]. Geophysical Research Letters, 2005, 32(8): L08809.
[23] JONES A E, ANDERSON P S, WOLFF E W, et al. A role for newly forming sea ice in springtime polar tropospheric ozone loss? Observational evidence from Halley Station, Antarctica [J]. Journal of Geophysical Research Atmospheres, 2006, 111(D8): D08306.
[24] JACOBI H W, KALESCHKE L, RICHTER A, et al. Observation of a fast ozone loss over frost flowers in the marginal ice zone of the Arctic Ocean [J]. Journal of Geophysical Research Atmospheres, 2006, 111(D15): D15309. doi: 10.1029/2005JD006715
[25] PLATT U. Differential optical absorption spectroscopy (DOAS), in air monitoring by spectroscopic techniques [J]. Chemical Analysis Series, 1994: 127.
[26] TAS E, MATVEEV V, ZINGLER J, et al. Frequency and extent of ozone destruction episodes over the Dead Sea, Israel [J]. Atmospheric Environment, 2003, 37(34): 4769-4780. doi: 10.1016/j.atmosenv.2003.08.015
[27] SHECHNER M, GUENTHER A, RHEW R, et al. Emission of volatile halogenated organic compounds over various Dead Sea landscapes [J]. Atmospheric Chemistry and Physics, 2019, 19(11): 7667-7690. doi: 10.5194/acp-19-7667-2019
[28] HOLLA R, SCHMITT S, FRIEß U, et al. Vertical distribution of BrO in the boundary layer at the Dead Sea [J]. Environmental Chemistry, 2015, 12(4): 438-460. doi: 10.1071/EN14224
[29] SANDER R, KERKWEG A, JOCKEL P, et al. Technical note: The new comprehensive atmospheric chemistry module MECCA [J]. Atmospheric Chemistry and Physics, 2005, 5(2): 445-450. doi: 10.5194/acp-5-445-2005
[30] SANDER R, JOCKEL P, KIRNER O, et al. The photolysis module JVAL-14, compatible with the MESSy standard, and the JVal PreProcessor (JVPP) [J]. Geoscientific Model Development, 2014, 7(6): 2653-2662. doi: 10.5194/gmd-7-2653-2014
[31] SANDER R, BAUMGAERTNER A, GROMOV S, et al. The atmospheric chemistry box model CAABA/MECCA-3.0 [J]. Geoscientific Model Development, 2011, 4(2): 373-380. doi: 10.5194/gmd-4-373-2011
[32] BIAZAR A P . The role of natural nitrogen oxides in ozone production in the southeastern environment [D]. Huntsville : University of Alabama in Huntsville, 1995.
[33] von GLASOW R, SANDER R, BOTT A, et al. Modeling halogen chemistry in the marine boundary layer 1. Cloud-free MBL [J]. Journal of Geophysical Research Atmospheres, 2002, 107(D17): 4341.
[34] von GLASOW R, SANDER R, BOTT A, et al. Modeling halogen chemistry in the marine boundary layer 2. Interactions with sulfur and the cloud-covered MBL [J]. Journal of Geophysical Research Atmospheres, 2002, 107(D17): 4323.
[35] VON GLASOW R . Modeling the gas and aqueous phase chemistry of the marine boundary layer [D]. Mainz, Germany: Johannes Gutenberg University of Mainz, 2001.
[36] TAS E, PELEG M, PEDERSEN D U, et al. Measurement-based modeling of bromine chemistry in the boundary layer – 1: Bromine chemistry at the Dead Sea [J]. Atmospheric Chemistry and Physics, 2006, 6(12): 5589-5604. doi: 10.5194/acp-6-5589-2006
[37] TAS E, PELEG M, PEDERSEN D U, et al. Measurement-based modeling of bromine chemistry in the Dead Sea boundary layer - Part 2: The influence of NO2 on bromine chemistry at mid-latitude areas [J]. Atmospheric Chemistry and Physics, 2008, 8(16): 4811-4821. doi: 10.5194/acp-8-4811-2008
[38] SMOYDZIN L , VON GLASOW R. Modelling chemistry over the Dead Sea: bromine and ozone chemistry [J]. Atmospheric Chemistry and Physics, 2009, 9(14): 5057-5072.
[39] TAS E, OBRIST D, PELEG M, et al. Measurement-based modelling of bromine-induced oxidation of mercury above the Dead Sea [J]. Atmospheric Chemistry and Physics, 2012, 12: 2429-2440. doi: 10.5194/acp-12-2429-2012
[40] WAYNE R P, POULET G, BIGGS P, et al. Halogen oxides: radicals, sources and reservoirs in the laboratory and in the atmosphere [J]. Atmospheric Environment, 1995, 29(20): 2677-2881. doi: 10.1016/1352-2310(95)90286-4
[41] HANSON D R, RAVISHANKARA A R. Heterogeneous chemistry of bromine species in sulfuric acid under stratospheric conditions [J]. Geophysical Research Letters, 1995, 22(4): 385-388. doi: 10.1029/94GL03379
[42] HANSON D R , RAVISHANKARA A R , LOVEJOY E R. Reaction of BrONO2 with H2O on submicron sulfuric acid aerosol and implications for the lower stratosphere [J]. Journal of Geophysical Research:Atmospheres, 1996, 101(D4): 9063-9069.
[43] SANDER R, RUDICH Y, von GLASOW R, et al. The role of BrNO3 in marine tropospheric chemistry: A model study [J]. Geophysical Research Letters, 1999, 26(18): 2857-2860. doi: 10.1029/1999GL900478
[44] le BRAS G, PLATT U. A possible mechanism for combined chlorine and bromine catalyzed destruction of tropospheric ozone in the Arctic [J]. Geophysical Research Letters, 1995, 22(5): 599-602. doi: 10.1029/94GL03334
[45] SOLOMON S, GARCIA R R, RAVISHANKARA A R. On the role of iodine in ozone depletion [J]. Journal of Geophysical Research Atmospheres, 1994, 99(D10): 20491-20499. doi: 10.1029/94JD02028
[46] ADAMS J W, HOLMES N S, CROWLEY J N. Uptake and reaction of HOBr on frozen and dry salt surfaces between 253 and 233 K [J]. Atmospheric Chemistry and Physics, 2002, 2(1): 79-91. doi: 10.5194/acp-2-79-2002
[47] SAIZ-LOPEZ A, PLANE J M C, MAHAJAN A S, et al. On the vertical distribution of boundary layer halogens over coastal Antarctica: Implications for O3, HOx, NOx and the Hg lifetime [J]. Atmospheric Chemistry and Physics, 2008, 8(4): 887-900. doi: 10.5194/acp-8-887-2008
[48] AKIMOTO H . Atmospheric reaction chemistry [M]. Tokyo: Springer. 2016.
[49] ZHOU J S, CAO L, LI S M. Influence of the background nitrogen oxides on the tropospheric ozone depletion events in the Arctic during springtime [J]. Atmosphere, 2020, 11(4): 344. doi: 10.3390/atmos11040344
[50] SCHROEDER W H, ANLAUF K G, BARRIE L A, et al. Arctic springtime depletion of mercury [J]. Nature, 1998, 394(6691): 331-332. doi: 10.1038/28530
[51] MOORE C W, OBRIST D, LURIA M, et al. Atmospheric mercury depletion events at the Dead Sea: Spatial and temporal aspects [J]. Atmospheric Environment, 2013, 69: 231-239. doi: 10.1016/j.atmosenv.2012.12.020
[52] OBRIST D, TAS E, PELEG M, et al. Bromine-induced oxidation of mercury in the mid-latitude atmosphere [J]. Nature Geoscience, 2011, 4(1): 22-26. doi: 10.1038/ngeo1018
[53] PELEG M, MATVEEV V, TAS E, et al. Mercury depletion events in the troposphere in mid-latitudes at the Dead Sea, Israel [J]. Environmental Science & Technology, 2007, 41(21): 7280-7285.
[54] GRELL G A, PECKHAM S E, SCHMITZ R, et al. Fully coupled 'online' chemistry within the WRF model [J]. Atmospheric Environment, 2005, 39(37): 6957-6976. doi: 10.1016/j.atmosenv.2005.04.027
[55] BYUN D, SCHERE K L. Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system [J]. Applied Mechanics Reviews, 2006, 59(2): 51-77. doi: 10.1115/1.2128636
[56] HÖRMANN C, SIHLER H, BEIRLE S, et al. Seasonal variation of tropospheric bromine monoxide over the Rann of Kutch salt marsh seen from space [J]. Atmospheric Chemistry and Physics, 2016, 16(20): 13015-13034. doi: 10.5194/acp-16-13015-2016