[1] |
刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展 [J]. 环境化学, 2018, 37(9): 2016-2024. doi: 10.7524/j.issn.0254-6108.2017110105
LIU J Y, LIU L H, XUE J R, et al. Research progress on treatment of heavy metal wastewater by adsorption [J]. Environmental Chemistry, 2018, 37(9): 2016-2024(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110105
|
[2] |
ZHOU G, LUO J, LIU C, et al. A highly efficient polyampholyte hydrogel sorbent based fixed-bed process for heavy metal removal in actual industrial effluent [J]. Water Research, 2016, 89: 151-160. doi: 10.1016/j.watres.2015.11.053
|
[3] |
谢厦, 徐应明, 闫翠侠, 等. 酸碱复合改性海泡石亚结构特征及其对Cd(II)吸附性能 [J]. 环境科学, 2020, 41(1): 293-303.
XIE X, XU Y M, YAN C X, et al. Substructure characteristics of combined acid-base modified sepiolite and its adsorption for Cd(II) [J]. Environmental Science, 2020, 41(1): 293-303(in Chinese).
|
[4] |
LIU L H, TAN W F, SUIB S L, et al. Effective zinc adsorption driven by electrochemical redox reactions of birnessite nanosheets generated by solar photochemistry [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13907-13914.
|
[5] |
马俊平, 赵秋宇, 王晨, 等. 二氧化锰基纳米材料对重金属离子的去除及机理研究进展 [J]. 环境化学, 2020, 39(3): 687-703. doi: 10.7524/j.issn.0254-6108.2019090207
MA J P, ZHAO Q Y, WANG C, et al. Removal of heavy metal ions by manganese dioxide-based nanomaterials and mechanism research: A review [J]. Environmental Chemistry, 2020, 39(3): 687-703(in Chinese). doi: 10.7524/j.issn.0254-6108.2019090207
|
[6] |
FENG X H, ZHAI L M, TAN W F, et al. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals [J]. Environmental Pollution, 2007, 147(2): 366-373. doi: 10.1016/j.envpol.2006.05.028
|
[7] |
WANG Y, FENG X H, VILLALOBOS M, et al. Sorption behavior of heavy metals on birnessite: Relationship with its Mn average oxidation state and implications for types of sorption sites [J]. Chemical Geology, 2012, 292/293: 25-34. doi: 10.1016/j.chemgeo.2011.11.001
|
[8] |
LEFKOWITZ J P, ELZINGA, E J. Impacts of aqueous Mn(Ⅱ) on the sorption of Zn(Ⅱ) by hexagonal birnessite [J]. Environmental Science & Technology, 2015, 49(8): 4886-4893.
|
[9] |
LEFKOWITZ J P, ELZINGA E J. Structural alteration of hexagonal birnessite by aqueous Mn(Ⅱ): Impacts on Ni(Ⅱ) sorption [J]. Chemical Geology, 2017, 466: 524-532. doi: 10.1016/j.chemgeo.2017.07.002
|
[10] |
LIU J T, GE X, YE X X, et al. 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions [J]. Journal of Materials Chemistry A, 2016, 4(5): 1970-1979. doi: 10.1039/C5TA08106H
|
[11] |
费杨, 阎秀兰, 李永华. 铁锰双金属材料在不同pH条件下对土壤As和重金属的稳定化作用[J]. 环境科学, 2018, 39(3)∶1430–1437, 1435–1437.
FEI Y, YAN X L, LI Y H, Stabilization effects of Fe-Mn binary oxide on arsenic and heavy metal cocontaminated soils under different pH conditions[J]. Environmental Science, 2018, 39(3): 1430–1433, 1435–1437 (in Chinese).
|
[12] |
LIU L H, LUO Y, TAN W F, et al. Zinc removal from aqueous solution using a deionization pseudocapacitor with a high-performance nanostructured birnessite electrode [J]. Environmental Science:Nano, 2017, 4: 811-823. doi: 10.1039/C6EN00671J
|
[13] |
YANG X, LIU L H, TAN W F, et al. High-performance Cu2+ adsorption of birnessite using electrochemically controlled redox reactions [J]. Journal of Hazardous Materials, 2018, 354: 107-115. doi: 10.1016/j.jhazmat.2018.04.069
|
[14] |
PENG Q C, LIU L H, LUO Y, et al. Cadmium removal from aqueous solution by a deionization supercapacitor with a birnessite electrode [J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34405-34413.
|
[15] |
刘坤, 閤明勇, 汤睿, 等. Pb(Ⅱ)、Zn(Ⅱ)、Cu(Ⅱ)在碱性钙基膨润土上的竞争吸附 [J]. 非金属矿, 2019, 42(1): 17-20. doi: 10.3969/j.issn.1000-8098.2019.01.006
LIU K, HE M Y, TANG R, et al. Competitive adsorption of Pb(Ⅱ), Zn(Ⅱ) and Cu(Ⅱ) on alkaline Ca-bentonite [J]. Non-Metallic Mines, 2019, 42(1): 17-20(in Chinese). doi: 10.3969/j.issn.1000-8098.2019.01.006
|
[16] |
MCKENZIE R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese [J]. Mineralogical Magazine, 1971, 38(296): 493-502. doi: 10.1180/minmag.1971.038.296.12
|
[17] |
ZHAO W, LIU F, FENG X H, et al. Fourier transform infrared spectroscopy study of acid birnessites before and after Pb2+ adsorption [J]. Clay Minerals, 2012, 47(2): 191-204. doi: 10.1180/claymin.2012.047.2.04
|
[18] |
LIU L H, QIU G H, SUIB S L, et al. Enhancement of Zn2+ and Ni2+ removal performance using a deionization pseudocapacitor with nanostructured birnessite and its carbon nanotube composite electrodes [J]. Chemical Engineering Journal, 2017, 328: 464-473. doi: 10.1016/j.cej.2017.07.066
|
[19] |
LIU L H, LUO Y, TAN W F, et al. Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials [J]. Journal of Colloid and Interface Science, 2016, 482: 183-192. doi: 10.1016/j.jcis.2016.07.077
|
[20] |
KWON K D, REFSON K, SPOSITO G. Understanding the trends in transition metal sorption by vacancy sites in birnessite [J]. Geochimica et Cosmochimica Acta, 2013, 101: 222-232. doi: 10.1016/j.gca.2012.08.038
|
[21] |
KWON K D, REFSON K, SPOSITO G. Surface complexation of Pb(Ⅱ) by hexagonal birnessite nanoparticles [J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6731-6740. doi: 10.1016/j.gca.2010.09.002
|
[22] |
KWON K D, REFSON K, SPOSITO G. Zinc surface complexes on birnessite: A density functional theory study [J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1273-1284. doi: 10.1016/j.gca.2008.11.033
|
[23] |
PEÑA J, KWON K D, REFSON K, et al. Mechanisms of nickel sorption by a bacteriogenic birnessite [J]. Geochimica et Cosmochimica Acta, 2010, 74(11): 3076-3089. doi: 10.1016/j.gca.2010.02.035
|
[24] |
VOLKOV A G, PAULA S, DEAMER D W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers [J]. Bioelectrochemistry and Bioenergetics, 1997, 42(2): 153-160. doi: 10.1016/S0302-4598(96)05097-0
|