[1] RAYMAN M P. Selenium and human health [J]. The Lancet, 2012, 379(9822): 1256-1268. doi: 10.1016/S0140-6736(11)61452-9
[2] RAYMAN M P. Food-chain selenium and human health: Emphasis on intake [J]. British Journal of Nutrition, 2008, 100(2): 254-268. doi: 10.1017/S0007114508939830
[3] GUILLIN O M, VINDRY C, OHLMANN T, et al. Selenium, selenoproteins and viral infection [J]. Nutrients, 2019, 11(9): 1-33.
[4] HEALTH CANADA. Guidelines for Canadian drinking water quality Summary Table [M]. Ottawa: Water and Air Quality Bureau. 2014: 7.
[5] Office of Water. 2018 edition of the drinking water stamdards and health adbisories [M]. Washington DC: United States Environmental Protection Agency (U. S. EPA). 2018: 9.
[6] WHO. Selenium in drinking-water, background document for development of WHO guidelines for drinking-water quality [M]. Geneva: WHO. 2011: 9.
[7] 李家熙, 张光弟, 葛晓立, 等. 人体硒缺乏与过剩的地球化学环境特征及其预测[M]. 北京: 地质出版社, 2000: 2-10. LI J X, ZHANG G D, GE X L, et al. Prediction and geochemical environmental character of human selenium imbalances [M]. Beijing, Geology Press, 2000: 2-10 (in Chinese).
[8] WINKEL L H, JOHNSON C A, LENZ M, et al. Environmental selenium research: From microscopic processes to global understanding [J]. Environmental Science & Technology, 2012, 46(2): 571-579.
[9] SIMON G, KESLER S E, ESSENE E. Phase relations among selenides, sulfides, tellurides, and oxides: II. Applications to selenide-bearing ore deposit [J]. Economic Geology, 1997, 92(4): 468-484. doi: 10.2113/gsecongeo.92.4.468
[10] 樊海峰, 温汉捷, 凌宏文, 等. 表生环境中硒形态研究现状 [J]. 地球与环境, 2006, 34(2): 19-26. FAN H F, WEN H J, LING H W, et al. Research status of selenium morphology in superorganism environmen [J]. Earth and Environment, 2006, 34(2): 19-26(in Chinese).
[11] ZHANG Y, MOORE J N, FRANKENBERGER W T. Speciation of soluble selenium in agricultural drainage waters and aqueous soil-sediment extracts using hydride generation atomic absorption spectrometry [J]. Environmental Science & Technology, 1999, 33: 1652-1656.
[12] GAO X, LI X, MU J, et al. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by polyporus umbellatus polysaccharide [J]. International Journal of Biological Macromolecules, 2020, 152: 605-615. doi: 10.1016/j.ijbiomac.2020.02.199
[13] CHAKRABORTY S, BARDELLI F, CHARLET L. Reactivities of Fe(Ⅱ) on calcite selenium reduction [J]. Environmental Science & Technology, 2010, 44(4): 1288-1294.
[14] HAN D S, BATCHELOR B, ABDEL-WAHAB A. Sorption of selenium(Ⅳ) and selenium(Ⅵ) to mackinawite (FeS): Effect of contact time, extent of removal, sorption envelopes [J]. Journal of Hazardous Materials, 2011, 186(1): 451-457. doi: 10.1016/j.jhazmat.2010.11.017
[15] LIANG L, YANG W, GUAN X, et al. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron [J]. Water research, 2013, 47(15): 5846-5855. doi: 10.1016/j.watres.2013.07.011
[16] KALAITZIDOU K, BAKOUROS L, MITRAKAS M. Techno-economic evaluation of iron and aluminum coagulants on Se(Ⅳ) removal [J]. Water, 2020, 12(3): 1-10.
[17] HAN D S, BATCHELOR B, ABDEL-WAHAB A. Sorption of selenium(Ⅳ) and selenium(Ⅵ) onto synthetic pyrite (FeS2): Spectroscopic and microscopic analyses [J]. Journal of Colloid and Interface Science, 2012, 368(1): 496-504. doi: 10.1016/j.jcis.2011.10.065
[18] LIN L, XU X, PAPELIS C, et al. Sorption of metals and metalloids from reverse osmosis concentrate on drinking water treatment solids [J]. Separation and Purification Technology, 2014, 134: 37-45. doi: 10.1016/j.seppur.2014.07.008
[19] SHARMA S, DESAI A V, JOARDER B, et al. A water-stable ionic MOF for the selective capture of toxic oxoanions of Se(Ⅵ) and As(Ⅴ) and crystallographic insight into the ion-exchange mechanism [J]. Angewandte Chemie International Edtion. in English, 2020, 59(20): 7788-7792. doi: 10.1002/anie.202000670
[20] BAEK K, KASEM N, CIBLAK A, et al. Electrochemical removal of selenate from aqueous solutions [J]. Chemical Engineering Journal, 2013, 215-216: 678-684. doi: 10.1016/j.cej.2012.09.135
[21] LI D B, CHENG Y Y, WU C, et al. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm [J]. Scientific Reports, 2014, 4: 1-7.
[22] LEE M R F, FLEMING H R, COGAN T, et al. Assessing the ability of silage lactic acid bacteria to incorporate and transform inorganic selenium within laboratory scale silos [J]. Animal Feed Science and Technology, 2019, 253: 125-134. doi: 10.1016/j.anifeedsci.2019.05.011
[23] 马建伟, 任淑鹏, 宋亚瑞, 等. 零价铁技术在废水处理领域的应用研究进展 [J]. 化学通报, 2019, 82(1): 3-11. MA J W, REN S P, SONG Y R, et al. Advances in the application of zero-valent iron technology in the field of wastewater treatment [J]. Chemistry Bulletin, 2019, 82(1): 3-11(in Chinese).
[24] LI Y, ZHANG Y, LI J, et al. Enhanced removal of pentachlorophenol by a novel composite: Nanoscale zero valent iron immobilized on organobentonite [J]. Environmental Pollution, 2011, 159(12): 3744-3749. doi: 10.1016/j.envpol.2011.07.016
[25] LU H, DONG J, ZHANG M, et al. SiO2-coated zero-valent iron nanocomposites for aqueous nitrobenzene reduction in groundwater: Performance, reduction mechanism and the effects of hydrogeochemical constituents [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 558: 271-279. doi: 10.1016/j.colsurfa.2018.08.081
[26] LI Y, LU Y, ZHU X. Photo-fenton discoloration of the azo dye X-3B over pillared bentonites containing iron [J]. Journal of Hazardous Materials, 2006, 132(2/3): 196-201.
[27] LEE T, LIM H, LEE Y, et al. Use of waste iron metal for removal of Cr(Ⅵ) from water [J]. Chemosphere, 2003, 53(5): 479-485. doi: 10.1016/S0045-6535(03)00548-4
[28] NOUBACTEP C, SCHONER A, MEINRATH G. Mechanism of uranium removal from the aqueous solution by elemental iron [J]. Journal of Hazardous Materials, 2006, 132(2/3): 202-212.
[29] XI Y, MALLAVARAPU M, NAIDU R. Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—a SEM, TEM and XPS study [J]. Materials Research Bulletin, 2010, 45(10): 1361-1367. doi: 10.1016/j.materresbull.2010.06.046
[30] BANG S, KORFIATIS G P, MENG X. Removal of arsenic from water by zero-valent iron [J]. Journal of Hazardous Materials, 2005, 121(1/3): 61-67.
[31] BILARDI S, CALABRO P S, MORACI N. The removal efficiency and long-term hydraulic behaviour of zero valent iron/lapillus mixtures for the simultaneous removal of Cu2+, Ni2+ and Zn2+ [J]. Science of the Total Environment, 2019, 675: 490-500. doi: 10.1016/j.scitotenv.2019.04.260
[32] STATHAM T M, MUMFORD K A, STARK S C, et al. Removal of copper and zinc from ground water by granular zero-valent iron: A mechanistic study [J]. Separation Science and Technology, 2015, 50(16): 2427-2435.
[33] BALDWIN R J, ACRES W, STATUTER J, et al. Process for the removel of selenium aqueous system [P]. US Patent 4405464, 1983.
[34] GUAN X, SUN Y, QIN H, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades(1994-2004) [J]. Water Reasarch, 2015, 75: 224-248. doi: 10.1016/j.watres.2015.02.034
[35] REN C, LI Y, LI J, et al. Immobilization of nanoscale zero valent iron on organobentonite for accelerated reduction of nirtobenzene [J]. Journal of Chemical Technology and Biotechnology, 2014(89): 1961-1966.
[36] 夏雪芬, 滑熠龙, 黄潇月, 等. 纳米零价铁对水中砷和硒的去除的比较研究 [J]. 化学学报, 2017, 75(6): 594-601. doi: 10.6023/A17030099 XIA X, HUA Y, HUANG X, et al. Removal of arsenic and selenium with nanoscale zero-valent iron (nZVI) [J]. Acta Chimica Sinica, 2017, 75(6): 594-601(in Chinese). doi: 10.6023/A17030099
[37] LIANG L, JIANG X, YANG W, et al. Kinetics of selenite reduction by zero-valent iron [J]. Desalination and Water Treatment, 2013, 53(9): 2540-2548.
[38] ANDREW P M. Removal of selenate from water by chemical reduction [J]. Industrial & Engineering Chemistry Research, 1988, 27(1): 187-191.
[39] QIN H, LI J, YANG H, et al. Coupled effect of ferrous ion and oxygen on the electron selectivity of zerovalent iron for selenate sequestration [J]. Environmental Science & Technology, 2017, 51(9): 5090-5097.
[40] LIANG L, GUAN X, HUANG Y, et al. Efficient selenate removal by zero-valent iron in the presence of weak magnetic field [J]. Separation and Purification Technology, 2015, 156: 1064-1072. doi: 10.1016/j.seppur.2015.09.062
[41] YOON I H, BANG S, KIM K W, et al. Selenate removal by zero-valent iron in oxic condition: the role of Fe(Ⅱ) and selenate removal mechanism [J]. Environmental Science and Pollution Research, 2016, 23(2): 1081-1090. doi: 10.1007/s11356-015-4578-4
[42] QIU S R, LAI H F, ROBERSON M J, et al. Removal of contaminants from aqueous solution by reaction with iron sufaces [J]. Langmuir, 2000, 16(5): 2230-2236. doi: 10.1021/la990902h
[43] ZHANG Y Q, WANG J F, AMRHEIN C, et al. Removal of selenate from water by zerovalent iron [J]. Journal of Environmental Quality, 2005, 34(2): 487-495. doi: 10.2134/jeq2005.0487
[44] ZHANG Y, AMRHEIN C, CHANG A, et al. Effect of zero-valent iron and a redox mediator on removal of selenium in agricultural drainage water [J]. Science of the Total Environment, 2008, 407(1): 89-96. doi: 10.1016/j.scitotenv.2008.09.009
[45] 梁丽萍, 杨文君, 关小红. 纳米零价铁去除地下水中亚硒酸盐的动力学即机理 [J]. 哈尔滨工程大学学报, 2014, 46(6): 20-24. LIANG L, YANG W, GUAN X. Reductive removak of Se(Ⅳ) by nanoscale zero-valent iron under anoxic conditions: kinetics and mechnism [J]. Journal of Harbin Institute of Technology, 2014, 46(6): 20-24(in Chinese).
[46] XU L, HUANG Y. Kinetics and mechanism of selenite reduction by zero valent iron under anaerobic condition activated and enhanced by dissolved Fe(Ⅱ) [J]. Science of the Total Environment, 2019, 664: 698-706. doi: 10.1016/j.scitotenv.2019.02.044
[47] YOON I-H, KIM K-W, BANG S, et al. Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion [J]. Applied Catalysis B:Environmental, 2011, 104(1/2): 185-192.
[48] TWIDWELL L, MCCLOSKEY J, JOYCE H, et al. Removal of selenium oxyanions from mine waters utilizing elemental iron and galvanically coupled metals [C/OL]. [2020-11-8]https://www.researchgate.net/publication/235348992
[49] TANG C, HUANG Y, ZHANG Z, et al. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe2+ and corrosion products, and selenate removal mechanisms [J]. Water Research, 2014, 67: 166-174. doi: 10.1016/j.watres.2014.09.016
[50] TANG C, HUANG Y, ZHANG Z, et al. Rapid removal of selenate in a zero-valent iron/Fe3O4/Fe2+ synergetic system [J]. Applied Catalysis B:Environmental, 2016, 184: 320-327. doi: 10.1016/j.apcatb.2015.11.045
[51] BORSIG N, SCHEINOST A C, SHAW S, et al. Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(Ⅱ) hydroxide and green rust [J]. Dalton Transactions, 2018, 47(32): 11002-10015. doi: 10.1039/C8DT01799A
[52] ONOGUCHI A, GRANATA G, HARAGUCHI D, et al. Kinetics and mechanism of selenate and selenite removal in solution by green rust-sulfate [J]. Royal Society Open Science, 2019, 6(4): 1-13.
[53] LI Z, HUANG D, MCDONALD L M. Heterogeneous selenite reduction by zero valent iron steel wool [J]. Water Science and Technology, 2017, 75(3-4): 908-915.
[54] KLAS S, KIRK D W. Understanding the positive effects of low pH and limited aeration on selenate removal from water by elemental iron [J]. Separation and Purification Technology, 2013, 116: 222-229. doi: 10.1016/j.seppur.2013.05.044
[55] LI Y, GUO X, DONG H, et al. Selenite removal from groundwater by zero-valent iron (ZVI) in combination with oxidants [J]. Chemical Engineering Journal, 2018, 345: 432-440. doi: 10.1016/j.cej.2018.03.187
[56] OLEGARIO J T, YEE N, MILLER M, et al. Reduction of Se(Ⅵ) to Se(-Ⅱ) by zerovalent iron nanoparticle suspensions [J]. Journal of Nanoparticle Research, 2009, 12(6): 2057-2068.
[57] XIA X, LING L, ZHANG W-X. Genesis of pure Se(0) nano- and micro-structures in wastewater with nanoscale zero-valent iron (nZVI) [J]. Environmental Science:Nano, 2017, 4(1): 52-59. doi: 10.1039/C6EN00231E
[58] LING L, PAN B, ZHANG W X. Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(Ⅳ) [J]. Water research, 2015, 71: 274-281. doi: 10.1016/j.watres.2015.01.002
[59] LIU H, CAI Z, ZHAO X, et al. Reductive removal of selenate in water using stabilized zero-valent iron nanoparticles [J]. Water Environment Research, 2016, 88(8): 694-703. doi: 10.2175/106143016X14609975746929
[60] SUN Y P, LI X Q, CAO J, et al. Characterization of zero-valent iron nanoparticles [J]. Advances in Colloid and Interface Science, 2006, 120(1-3): 47-56. doi: 10.1016/j.cis.2006.03.001
[61] SUGANYA S,SENTHIL KUMAR P. An investigation of adsorption parameters on ZVI-AC nanocomposite in the displacement of Se(Ⅳ) ions through CCD analysis [J]. Journal of Industrial and Engineering Chemistry, 2019, 75: 211-223. doi: 10.1016/j.jiec.2019.03.026
[62] TAN G, MAO Y, WANG H, et al. Comparison of biochar- and activated carbon-supported zerovalent iron for the removal of Se(Ⅳ) and Se(Ⅵ): influence of pH, ionic strength, and natural organic matter [J]. Environmental Science and Pollution Research, 2019, 26(21): 21609-21618. doi: 10.1007/s11356-019-05497-0
[63] YU K, GU C, BOYD S A, et al. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron [J]. Environmental Science & Technology, 2012, 46(16): 8969-8975.
[64] LI Y, CHENG W, SHENG G, et al. Synergetic effect of a pillared bentonite support on Se(Ⅵ) removal by nanoscale zero valent iron [J]. Applied Catalysis B:Environmental, 2015, 174-175: 329-335. doi: 10.1016/j.apcatb.2015.03.025
[65] 魏雪. 生物炭包覆纳米铁去除水中硒的研究[D]. 长沙: 湖南大学, 2016. WEI X. Biochar supported nano scale zero valent iron for selenium removal [D]. Changsha: Hunan University, 2016(in Chinese).
[66] QIU Z, TIAN Q, ZHANG T, et al. Fabrication of dynamic zero-valent iron/MnO2 nanowire membrane for efficient and recyclable selenium separation [J]. Separation and Purification Technology, 2020, 230: 1-10.
[67] QIN H, SUN Y, YANG H, et al. Unexpected effect of buffer solution on removal of selenite and selenate by zerovalent iron [J]. Chemical Engineering Journal, 2018, 334: 296-304. doi: 10.1016/j.cej.2017.10.025
[68] LIANG L, SUN W, GUAN X, et al. Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron [J]. Water research, 2014, 49: 371-380. doi: 10.1016/j.watres.2013.10.026
[69] QIAO J, SONG Y, SUN Y, et al. Effect of solution chemistry on the reactivity and electron selectivity of zerovalent iron toward Se(Ⅵ) removal [J]. Chemical Engineering Journal, 2018, 353: 246-253. doi: 10.1016/j.cej.2018.07.113
[70] DAS S, LINDSAY M B J, ESSILFIE-DUGHAN J, et al. Dissolved selenium (Ⅵ) removal by zero-valent iron under anoxic conditions: influence of sulfate and nitrate [J]. ACS Omega, 2017, 2(4): 1513-1522. doi: 10.1021/acsomega.6b00382
[71] DAS S, LINDSAY M B J, HENDRY M J. Selenate removal by zero-valent iron under anoxic conditions: Effects of nitrate and sulfate [J]. Environmental Earth Sciences, 2019, 78(16): 1-10.
[72] LING J, QIAO J, SONG Y, et al. Influence of coexisting ions on the electron efficiency of sulfidated zerovalent iron toward Se(Ⅵ) removal [J]. Chemical Engineering Journal, 2019, 378: 1-8.
[73] TANG C, HUANG Y H, ZENG H, et al. Promotion effect of Mn2+ and Co2+ on selenate reduction by zero-valent iron [J]. Chemical Engineering Journal, 2014, 244: 97-104. doi: 10.1016/j.cej.2014.01.059
[74] LI J, WANG C, QIAO J, et al. Enhancing the effect of bisulfite on sequestration of selenite by zerovalent iron [J]. RSC Advances, 2015, 5(93): 76032-76039. doi: 10.1039/C5RA14659C