[1] KANHAR A H, CHEN S Q, WANG F. Incineration fly ash and its treatment to possible utilization: A review [J]. Energies, 2020, 13(24): 6681. doi: 10.3390/en13246681
[2] GU T B, YIN C G, MA W C, et al. Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation [J]. Applied Energy, 2019, 247: 127-139. doi: 10.1016/j.apenergy.2019.04.014
[3] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社. 2007-2019. National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2007-2019(in Chinese)
[4] ZHANG Z G, YANG F, LIU J C, et al. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash [J]. Cement and Concrete Research, 2020, 137: 106200. doi: 10.1016/j.cemconres.2020.106200
[5] REN M H, LV Z Y, XU L, et al. Partitioning and removal behaviors of PCDD/Fs, PCBs and PCNs in a modern municipal solid waste incineration system [J]. Science of the Total Environment, 2020, 735: 139134. doi: 10.1016/j.scitotenv.2020.139134
[6] LUO H W, CHENG Y, HE D Q, et al. Review of leaching behavior of municipal solid waste incineration (MSWI) ash [J]. Science of the Total Environment, 2019, 668: 90-103. doi: 10.1016/j.scitotenv.2019.03.004
[7] 毛庚仁, 张涌新, 文雯, 等. 我国城市生活垃圾处理现状及焚烧法的可行性分析 [J]. 城市发展研究, 2010, 17(9): 12-16. MAO G R, ZHANG Y X, WEN W, et al. Analysis of municipal solid waste treatment status and the feasibility of incineration in China [J]. Urban Studies, 2010, 17(9): 12-16(in Chinese).
[8] LU J W, ZHANG S K, HAI J, et al. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions [J]. Waste Management, 2017, 69: 170-186. doi: 10.1016/j.wasman.2017.04.014
[9] 李诗媛, 别如山. 城市生活垃圾焚烧过程中二次污染物的生成与控制 [J]. 环境污染治理技术与设备, 2003(3): 63-67. LI S Y, BIE R S. Formation and control method of secondary pollutants from incineration of municipal solid waste [J]. Techniques and Equipment for Environmental Pollution Control, 2003(3): 63-67(in Chinese).
[10] 宋春莲. 多氯联苯/二恶英类化学污染物的环境行为及对人体健康的危害 [J]. 佳木斯大学学报(自然科学版), 2007, 25(2): 207-209. SONG C L. The environmental behavior of chemical contamination of polychlorinated biphenyl/ddioxi and the harm to human body [J]. Journal of Jiamusi University (Natural Science Edition), 2007, 25(2): 207-209(in Chinese).
[11] 于晓丽, 张江. 多环芳烃污染与防治对策 [J]. 油气田环境保护, 1996(4): 53-56. YU X L, ZHANG J. Pollution by multiring aromatic hydrocarbon and its preventive treatment strategy [J]. Environmental Protection of Oil & Gas Fields, 1996(4): 53-56(in Chinese).
[12] LIU G R, CAI Z W, ZHENG M H. Sources of unintentionally produced polychlorinated naphthalenes [J]. Chemosphere, 2014, 94: 1-12. doi: 10.1016/j.chemosphere.2013.09.021
[13] ZHU F, LI X F, LU J W, et al. Emission characteristics of PCDD/Fs in stack gas from municipal solid waste incineration plants in Northern China [J]. Chemosphere, 2018, 200: 23-29. doi: 10.1016/j.chemosphere.2018.02.092
[14] 郭颖. 固废处置中持久性自由基/二恶英的排放特性及检测研究[D]. 杭州: 浙江大学, 2014. GUO Y. Study on emission characteristics and detection of PCDD/fs and environment persistent free radicals during solid waste disposal[D]. Hangzhou: Zhejiang University, 2014(in Chinese).
[15] 张怀强. 医疗废物组分特性及其焚烧二噁英控制[D]. 杭州: 浙江大学, 2011. ZHANG H Q. Physical characteristics and dioxin emission control in medical wastes incineration[D]. Hangzhou: Zhejiang University, 2011(in Chinese).
[16] 刘劲松. 浙江省典型地区环境中持久性有机污染物污染现状, 分布规律和来源解析[D]. 杭州: 浙江大学, 2008. LIU J S. Level, distribution, and source resolution of persistent organic pollutants (POPs) in typical area in Zhejiang[D]. Hangzhou: Zhejiang University, 2011(in Chinese).
[17] 李煜. 我国城市生活垃圾焚烧处理发展分析 [J]. 中国环保产业, 2014(7): 36-38. doi: 10.3969/j.issn.1006-5377.2014.07.009 LI Y. Developing analysis on incineration treatment of urban domestic refuse in China [J]. China Environmental Protection Industry, 2014(7): 36-38(in Chinese). doi: 10.3969/j.issn.1006-5377.2014.07.009
[18] 戴勇, 余婷. 某生活垃圾焚烧厂掺烧一般工业有机固废烟气净化的应用 [J]. 机电工程技术, 2021, 50(4): 238-242. doi: 10.3969/j.issn.1009-9492.2021.04.066 DAI Y, YU T. Application of co-processing general industrial organic solid waste flue gas purification in a municipal waste incineration plant [J]. Mechanical & Electrical Engineering Technology, 2021, 50(4): 238-242(in Chinese). doi: 10.3969/j.issn.1009-9492.2021.04.066
[19] 中华人民共和国生态环境部. 国家危废豁免清单名录(2021版)[EB/OL]. [2020-11-25]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_810202.html. Ministry of Ecology and Environment of the People’s Republic of China. List of State Impervious Waste Exemptions(2021)[EB/OL]. [2020-11-25] . http://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_810202.html.
[20] 中华人民共和国生态环境部. 生活垃圾焚烧污染控制标准[EB/OL]. [2014-07-01]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/gtfwwrkzbz/201405/t20140530_276307. shtml. Ministry of Ecology and Environment of the People’s Republic of China. Standards for Pollution Control of Domestic Waste Incineration [EB/OL]. [2014-07-01]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/gtfwwrkzbz/201405/t20140530_276307.shtml.
[21] 董晓丹, 张玉林. 上海市生活垃圾理化特性调查分析 [J]. 环境卫生工程, 2016, 24(6): 18-21. doi: 10.3969/j.issn.1005-8206.2016.06.006 DONG X D, ZHANG Y L. Investigation and analysis of physicochemical characteristics of municipal solid waste in Shanghai [J]. Environmental Sanitation Engineering, 2016, 24(6): 18-21(in Chinese). doi: 10.3969/j.issn.1005-8206.2016.06.006
[22] MCKAY G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review [J]. Chemical Engineering Journal, 2002, 86(3): 343-368. doi: 10.1016/S1385-8947(01)00228-5
[23] OOI T C, LU L M. Formation and mitigation of PCDD/Fs in iron ore sintering [J]. Chemosphere, 2011, 85(3): 291-299. doi: 10.1016/j.chemosphere.2011.08.020
[24] ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, et al. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/fs) [J]. Progress in Energy and Combustion Science, 2009, 35(3): 245-274. doi: 10.1016/j.pecs.2008.12.001
[25] ÅMAND L E, KASSMAN H. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge [J]. Waste Management, 2013, 33(8): 1729-1739. doi: 10.1016/j.wasman.2013.03.022
[26] RYU J Y, MULHOLLAND J A, KIM D H, et al. Homologue and isomer patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans from phenol precursors: Comparison with municipal waste incinerator data [J]. Environmental Science & Technology, 2005, 39(12): 4398-4406.
[27] HELL K, STIEGLITZ L, DINJUS E. Mechanistic aspects of the de-novo synthesis of PCDD/PCDF on model mixtures and MSWI fly ashes using amorphous 12C- and 13C-labeled carbon [J]. Environmental Science & Technology, 2001, 35(19): 3892-3898.
[28] HUANG H, BUEKENS A. On the mechanisms of dioxin formation in combustion processes [J]. Chemosphere, 1995, 31(9): 4099-4117. doi: 10.1016/0045-6535(95)80011-9
[29] TUPPURAINEN K, HALONEN I, RUOKOJÄRVI P, et al. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review [J]. Chemosphere, 1998, 36(7): 1493-1511. doi: 10.1016/S0045-6535(97)10048-0
[30] 陈彤. 垃圾焚烧过程飞灰中二噁英的分布特性及控制技术初步研究[D]. 杭州: 浙江大学, 2003. CHEN T. Preliminary study on the distribution characteristics and control technology of dioxins in fly ash during waste incineration[D]. Hangzhou: Zhejiang University, 2003(in Chinese).
[31] ZHOU H, MENG A H, LONG Y Q, et al. A review of dioxin-related substances during municipal solid waste incineration [J]. Waste Management, 2015, 36: 106-118. doi: 10.1016/j.wasman.2014.11.011
[32] BABUSHOK V I, TSANG W. Gas-phase mechanism for dioxin formation [J]. Chemosphere, 2003, 51(10): 1023-1029. doi: 10.1016/S0045-6535(02)00716-6
[33] 张梦玫. 典型过渡金属化合物对二恶英异相催化生成影响及作用机理的研究[D]. 杭州: 浙江大学, 2020. ZHANG M M. Research on effect and reaction mechanisms of typical transition metal compounds on heterogeneous catalytic formation of dioxins[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
[34] SHAUB W M, TSANG W. Dioxin formation in incinerators [J]. Environmental Science & Technology, 1983, 17(12): 721-730.
[35] BALLSCHMITER K, BRAUNMILLER I, NIEMCZYK R, et al. Reaction pathways for the formation of polychloro-dibenzodioxins (PCDD) and—dibenzofurans (PCDF) in combustion processes: II. Chlorobenzenes and chlorophenols as precursors in the formation of polychloro-dibenzodioxins and—dibenzofurans in flame chemistry [J]. Chemosphere, 1988, 17(5): 995-1005. doi: 10.1016/0045-6535(88)90070-7
[36] 杨元平, 杨莉莉, 刘国瑞, 等. 工业热过程中无意产生的持久性有机污染物生成机理 [J]. 中国科学:化学, 2021, 51(4): 401-409. doi: 10.1360/SSC-2020-0148 YANG Y P, YANG L L, LIU G R, et al. Formation mechanism of unintentionally produced persistent organic pollutants in industrial thermal processes [J]. Scientia Sinica Chimica, 2021, 51(4): 401-409(in Chinese). doi: 10.1360/SSC-2020-0148
[37] LI S Q, ZHANG Q Z. Mechanistic studies on the dibenzofuran and dibenzo-p-dioxin formation reactions from o-benzyne precursor [J]. Computational and Theoretical Chemistry, 2015, 1061: 80-88. doi: 10.1016/j.comptc.2015.03.006
[38] KHACHATRYAN L, LOMNICKI S, DELLINGER B. An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol [J]. Chemosphere, 2007, 68(9): 1741-1750. doi: 10.1016/j.chemosphere.2007.03.042
[39] SHIN K J, CHANG Y S. Characterization of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and heavy metals in fly ash produced from Korean municipal solid waste incinerators [J]. Chemosphere, 1999, 38(11): 2655-2666. doi: 10.1016/S0045-6535(98)00473-1
[40] PANDELOVA M, STANEV I, HENKELMANN B, et al. Correlation of PCDD/F and PCB at combustion experiments using wood and hospital waste. Influence of (NH4)2SO4 as additive on PCDD/F and PCB emissions [J]. Chemosphere, 2009, 75(5): 685-691. doi: 10.1016/j.chemosphere.2008.12.043
[41] LEMIEUX P M, LEE C W, RYAN J V, et al. Bench-scale studies on the simultaneous formation of PCBs and PCDD/Fs from combustion systems [J]. Waste Management, 2001, 21(5): 419-425. doi: 10.1016/S0956-053X(00)00133-1
[42] LIU G R, YANG L L, ZHAN J Y, et al. Concentrations and patterns of polychlorinated biphenyls at different process stages of cement kilns co-processing waste incinerator fly ash [J]. Waste Management, 2016, 58: 280-286. doi: 10.1016/j.wasman.2016.09.010
[43] BAI S T, CHANG S H, DUH J M, et al. Characterization of PCDD/fs and dioxin-like PCBs emitted from two woodchip boilers in Taiwan [J]. Chemosphere, 2017, 189: 284-290. doi: 10.1016/j.chemosphere.2017.09.080
[44] WEBER R, IINO F, IMAGAWA T, et al. Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators [J]. Chemosphere, 2001, 44(6): 1429-1438. doi: 10.1016/S0045-6535(00)00508-7
[45] SCHOONENBOOM M H, TROMP P C, OLIE K. The formation of coplanar PCBs, PCDDs and PCDFs in a fly ash model system [J]. Chemosphere, 1995, 30(7): 1341-1349. doi: 10.1016/0045-6535(95)00038-A
[46] PANDELOVA M, LENOIR D, SCHRAMM K W. Correlation between PCDD/F, PCB and PCBz in coal/waste combustion. Influence of various inhibitors [J]. Chemosphere, 2006, 62(7): 1196-1205. doi: 10.1016/j.chemosphere.2005.07.068
[47] HIROTA M, TAKASHITA H, KATO J, et al. Elementary reaction path on polychlorinated biphenyls formation from polychlorinated benzenes in heterogeneous phase using ab initio molecular orbital calculation [J]. Chemosphere, 2003, 50(4): 457-467. doi: 10.1016/S0045-6535(02)00626-4
[48] MUGICA-ALVAREZ V, SANTIAGO-DE la ROSA N, FIGUEROA-LARA J, et al. Emissions of PAHs derived from sugarcane burning and processing in Chiapas and Morelos México [J]. Science of the Total Environment, 2015, 527/528: 474-482. doi: 10.1016/j.scitotenv.2015.04.089
[49] RAVINDRA K, SOKHI R, van GRIEKEN R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation [J]. Atmospheric Environment, 2008, 42(13): 2895-2921. doi: 10.1016/j.atmosenv.2007.12.010
[50] 万云洋, 朱迎佳, 费佳佳, 等. 环境中的多环芳烃结构及其危害 [J]. 油气田环境保护, 2017, 27(6): 23-26,56. doi: 10.3969/j.issn.1005-3158.2017.06.006 WAN Y Y, ZHU Y J, FEI J J, et al. The structure of polycyclic aromatic hydrocarbons and its danger in the environment [J]. Environmental Protection of Oil & Gas Fields, 2017, 27(6): 23-26,56(in Chinese). doi: 10.3969/j.issn.1005-3158.2017.06.006
[51] 秦林波. 医疗垃圾焚烧过程多环芳烃生成与控制研究[D]. 武汉: 武汉科技大学, 2017. QIN L B. The formation and reduction mechanism of PAHs during medical waste incineration[D]. Wuhan: Wuhan University of Science and Technology, 2017(in Chinese).
[52] LIU H M, WANG Y C, ZHAO S L, et al. Review on the current status of the co-combustion technology of organic solid waste (OSW) and coal in China [J]. Energy & Fuels, 2020, 34(12): 15448-15487.
[53] MAASIKMETS M, KUPRI H L, TEINEMAA E, et al. Emissions from burning municipal solid waste and wood in domestic heaters [J]. Atmospheric Pollution Research, 2016, 7(3): 438-446. doi: 10.1016/j.apr.2015.10.021
[54] HAN Y, CHEN Y J, FENG Y L, et al. Different formation mechanisms of PAH during wood and coal combustion under different temperatures [J]. Atmospheric Environment, 2020, 222: 117084. doi: 10.1016/j.atmosenv.2019.117084
[55] 吕家扬, 林颖, 蔡凤珊, 等. 市政污泥与生活垃圾协同焚烧的二噁英排放特征及毒性当量平衡 [J]. 华南师范大学学报(自然科学版), 2020, 52(5): 31-40. LÜ J Y, LIN Y, CAI F S, et al. PCDD/fs emission and toxic equivalent balance of municipal sewage sludge cocombustion in a solid waste incinerator [J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 31-40(in Chinese).
[56] 陈兆林, 温俊明, 刘朝阳, 等. 市政污泥与生活垃圾混烧技术验证 [J]. 环境工程学报, 2014, 8(1): 324-328. CHEN Z L, WEN J M, LIU C Y, et al. Validity study on co-incineration of municipal sewage sludge and municipal solid waste [J]. Chinese Journal of Environmental Engineering, 2014, 8(1): 324-328(in Chinese).
[57] 余杰, 鱼红霞, 杜义鹏, 等. 城市垃圾焚烧厂直接掺烧城市污泥处置技术及其污染控制 [J]. 环境工程学报, 2020, 14(11): 3155-3161. doi: 10.12030/j.cjee.202001003 YU J, YU H X, DU Y P, et al. Disposal technology and pollution control of directly mixed incineration of municipal sludge in municipal solid waste incineration plant [J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3155-3161(in Chinese). doi: 10.12030/j.cjee.202001003
[58] 陈海军, 严骁, 许榕发, 等. 市政污泥掺烧对生活垃圾焚烧设施烟气中污染物排放的影响 [J]. 安全与环境学报, 2018, 18(2): 766-772. CHEN H J, YAN X, XU R F, et al. Gaseous pollutant emissions from the mixed combustion of the municipal solid waste incinerator with sewage sludge [J]. Journal of Safety and Environment, 2018, 18(2): 766-772(in Chinese).
[59] EDO M, ORTUÑO N, PERSSON P E, et al. Emissions of toxic pollutants from co-combustion of demolition and construction wood and household waste fuel blends [J]. Chemosphere, 2018, 203: 506-513. doi: 10.1016/j.chemosphere.2018.03.203
[60] SVENSSON MYRIN E, PERSSON P E, JANSSON S. The influence of food waste on dioxin formation during incineration of refuse-derived fuels [J]. Fuel, 2014, 132: 165-169. doi: 10.1016/j.fuel.2014.04.083
[61] TOMSEJ T, HORAK J, TOMSEJOVA S, et al. The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1, 3, 5- triphenylbenzene [J]. Chemosphere, 2018, 196: 18-24. doi: 10.1016/j.chemosphere.2017.12.127
[62] CAI P, ZHAN M, MA H, et al. Pollutant emission during co-incineration of landfill material RDF in a lab-scale MSWI fluidized bed furnace [J]. Energy & Fuels, 2020, 34(2): 2346-2354.
[63] 李洋洋, 金宜英, 聂永丰. 污泥与煤混烧动力学及常规污染物排放分析 [J]. 中国环境科学, 2014, 34(3): 604-609. LI Y Y, JIN Y Y, NIE Y F. Effects of sewage sludge on coal combustion using thermo-gravimetric kinetic analysis [J]. China Environmental Science, 2014, 34(3): 604-609(in Chinese).
[64] LIN H, MA X Q. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator [J]. Waste Management, 2012, 32(3): 561-567. doi: 10.1016/j.wasman.2011.10.032
[65] 严骁, 贾燕, 李淑圆, 等. 污泥掺烧对焚烧后固体废物污染物排放的影响 [J]. 安全与环境学报, 2018, 18(1): 285-291. YAN X, JIA Y, LI S Y, et al. Influence of the municipal solid residue on the municipal solid waste emission [J]. Journal of Safety and Environment, 2018, 18(1): 285-291(in Chinese).
[66] WIKSTRÖM E, RYAN S, TOUATI A, et al. Importance of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans [J]. Environmental Science & Technology, 2003, 37(6): 1108-1113.
[67] ALTWICKER E R, KONDURI R K N V, MILLIGAN M S. The role of precursors in formation of polychloro-dibenzo-p-dioxins and polychloro-dibenzofurans during heterogeneous combustion [J]. Chemosphere, 1990, 20(10/11/12): 1935-1944.
[68] MORENO A I, FONT R, CONESA J A. Characterization of gaseous emissions and ashes from the combustion of furniture waste [J]. Waste Management, 2016, 58: 299-308. doi: 10.1016/j.wasman.2016.09.046
[69] CHEN Z L, LIN X Q, LU S Y, et al. Formation pathways of PCDD/Fs during the Co-combustion of municipal solid waste and coal [J]. Chemosphere, 2018, 208: 862-870. doi: 10.1016/j.chemosphere.2018.06.044
[70] PRAWISUDHA P, NAMIOKA T, YOSHIKAWA K. Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment [J]. Applied Energy, 2012, 90(1): 298-304. doi: 10.1016/j.apenergy.2011.03.021
[71] LIN Y S, MA X Q, PENG X W, et al. Hydrothermal carbonization of typical components of municipal solid waste for deriving hydrochars and their combustion behavior [J]. Bioresource Technology, 2017, 243: 539-547. doi: 10.1016/j.biortech.2017.06.117
[72] CHEN W H, KUO P C, LIU S H, et al. Thermal characterization of oil palm fiber and Eucalyptus in torrefaction [J]. Energy, 2014, 71: 40-48. doi: 10.1016/j.energy.2014.03.117
[73] TCHAPDA A, PISUPATI S. A review of thermal co-conversion of coal and biomass/waste [J]. Energies, 2014, 7(3): 1098-1148. doi: 10.3390/en7031098
[74] SAEED L, TOHKA A, HAAPALA M, et al. Pyrolysis and combustion of PVC, PVC-wood and PVC-coal mixtures in a two-stage fluidized bed process [J]. Fuel Processing Technology, 2004, 85(14): 1565-1583. doi: 10.1016/j.fuproc.2003.11.045
[75] PENG N N, LI Y, LIU Z G, et al. Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion [J]. Science of the Total Environment, 2016, 565: 1201-1207. doi: 10.1016/j.scitotenv.2016.05.188
[76] RUOKOJÂRVI P, ASIKAINEN A, RUUSKANEN J, et al. Urea as a PCDD/F inhibitor in municipal waste incineration [J]. Journal of the Air & Waste Management Association, 2001, 51(3): 422-431.
[77] CHANG M B, CHENG Y C, CHI K H. Reducing PCDD/F formation by adding sulfur as inhibitor in waste incineration processes [J]. Science of the Total Environment, 2006, 366(2/3): 456-465.
[78] WU H L, LU S Y, LI X D, et al. Inhibition of PCDD/F by adding sulphur compounds to the feed of a hazardous waste incinerator [J]. Chemosphere, 2012, 86(4): 361-367. doi: 10.1016/j.chemosphere.2011.10.016
[79] SAMARAS P, BLUMENSTOCK M, LENOIR D, et al. PCDD/F prevention by novel inhibitors: addition of inorganic S- and N-compounds in the fuel before combustion [J]. Environmental Science & Technology, 2000, 34(24): 5092-5096.
[80] 翁志华. 固体废物焚烧中二噁英控制措施探讨 [J]. 上海环境科学, 2011, 30(2): 82-84,89. WENG Z H. An approach to dioxin control measures in the process of solid waste incineration [J]. Shanghai Environmental Sciences, 2011, 30(2): 82-84,89(in Chinese).
[81] PANDELOVA M E, LENOIR D, KETTRUP A, et al. Primary measures for reduction of PCDD/F in co-combustion of lignite coal and waste: effect of various inhibitors [J]. Environmental Science & Technology, 2005, 39(9): 3345-3350.
[82] LIU W B, ZHENG M H, ZHANG B, et al. Inhibition of PCDD/Fs formation from dioxin precursors by calcium oxide [J]. Chemosphere, 2005, 60(6): 785-790. doi: 10.1016/j.chemosphere.2005.04.020
[83] LI Q Q, LI L W, SU G J, et al. Synergetic inhibition of PCDD/F formation from pentachlorophenol by mixtures of urea and calcium oxide [J]. Journal of Hazardous Materials, 2016, 317: 394-402. doi: 10.1016/j.jhazmat.2016.05.090
[84] MA H T, DU N, LIN X Y, et al. Inhibition of element sulfur and calcium oxide on the formation of PCDD/Fs during co-combustion experiment of municipal solid waste [J]. Science of the Total Environment, 2018, 633: 1263-1271. doi: 10.1016/j.scitotenv.2018.03.282
[85] CHEN Z L, LIN X Q, LU S Y, et al. Suppressing formation pathway of PCDD/Fs by S-N-containing compound in full-scale municipal solid waste incinerators [J]. Chemical Engineering Journal, 2019, 359: 1391-1399. doi: 10.1016/j.cej.2018.11.039
[86] LUNDIN L, GOMEZ-RICO M F, FORSBERG C, et al. Reduction of PCDD, PCDF and PCB during co-combustion of biomass with waste products from pulp and paper industry [J]. Chemosphere, 2013, 91(6): 797-801. doi: 10.1016/j.chemosphere.2013.01.090
[87] SHI D Z, MA J Y, WANG H L, et al. Detoxification of PCBs in fly ash from MSW incineration by hydrothermal treatment with composite siliconaluminum additives and seed induction [J]. Fuel Processing Technology, 2019, 195: 106157. doi: 10.1016/j.fuproc.2019.106157
[88] WILKEN M, BÖSKE J, JAGER J, et al. PCDD/F, PCB, chlorobenzene and chlorophenol emissions of a Municipal Solid Waste Incineration plant (MSWI)—variation within a five day routine performance and influence of Mg(OH)2-addition [J]. Chemosphere, 1994, 29(9/10/11): 2039-2050.
[89] WEI Y L, LEE J H. Manganese sulfate effect on PAH formation from polystyrene pyrolysis [J]. Science of the Total Environment, 1999, 228(1): 59-66. doi: 10.1016/S0048-9697(99)00023-6
[90] KAIVOSOJA T, VIRÉN A, TISSARI J, et al. Effects of a catalytic converter on PCDD/F, chlorophenol and PAH emissions in residential wood combustion [J]. Chemosphere, 2012, 88(3): 278-285. doi: 10.1016/j.chemosphere.2012.02.027
[91] CHANG F Y, CHEN J C, WEY M Y. The activity of Rh/Al2O3 and Rh-Na/Al2O3 catalysts for PAHs removal in the waste incineration processes: Effects of particulates, heavy metals, and acid gases [J]. Fuel, 2009, 88(9): 1563-1571. doi: 10.1016/j.fuel.2009.04.009
[92] 李素梅. 钢铁生产过程中UP-POPs的排放水平和特征研究[D]. 北京: 中国科学院大学, 2015. LI S M. Emission and Characterization of UP-POPs from Steelmaking Processes[D]. Beijing: University of Chinese Academy of Sciences, 2015(in Chinese).
[93] CHI K H, CHANG S H, HUANG C H, et al. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption [J]. Chemosphere, 2006, 64(9): 1489-1498. doi: 10.1016/j.chemosphere.2005.12.072
[94] LIU W B, TIAN Z Y, LI H F, et al. Mono- to octa-chlorinated PCDD/fs in stack gas from typical waste incinerators and their implications on emission [J]. Environmental Science & Technology, 2013, 47(17): 9774-9780.
[95] RUEGG H, SIGG A. Dioxin removal in a wet scrubber and dry particulate remover [J]. Chemosphere, 1992, 25(1/2): 143-148.
[96] 李元成. 我国典型生活垃圾焚烧烟气中UPOPs催化降解中试研究[D]. 北京: 清华大学, 2016. LI Y C. Pilot test on catalytic destruction of UPOPs in flue gas from typical municipal waste incineratorin China[D]. Beijing: Tsinghua University, 2016(in Chinese).
[97] EL ASSAL Z, OJALA S, PITKÄAHO S, et al. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts [J]. Chemical Engineering Journal, 2017, 313: 1010-1022. doi: 10.1016/j.cej.2016.10.139
[98] KAN J W, DENG L, LI B, et al. Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation [J]. Applied Catalysis A:General, 2017, 530: 21-29. doi: 10.1016/j.apcata.2016.11.013
[99] DAI Q G, BAI S X, WANG J W, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene [J]. Applied Catalysis B:Environmental, 2013, 142/143: 222-233. doi: 10.1016/j.apcatb.2013.05.026
[100] 蒋威宇. V2O5-WO3/TiO2催化剂协同净化NOx与氯代芳香化合物的反应特征与副产物研究[D]. 杭州: 浙江大学, 2020. JIANG W Y. Reaction characteristics and byproducts analyses over V2O5-WO3/TiO2 catalyst in the synergistic elimination of NOx and chloroaromatics[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
[101] LILJELIND P, UNSWORTH J, MAASKANT O, et al. Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction [J]. Chemosphere, 2001, 42(5/6/7): 615-623.
[102] HE F, LUO J Q, LIU S T. Novel metal loaded KIT-6 catalysts and their applications in the catalytic combustion of chlorobenzene [J]. Chemical Engineering Journal, 2016, 294: 362-370. doi: 10.1016/j.cej.2016.02.068
[103] 杜翠翠. 球磨法制备钒基催化剂催化降解氯苯及二噁英的基础研究[D]. 杭州: 浙江大学, 2018. DU C C. Fundamental research of catalytic decomposition of chlorobenzenes and dioxins over ball milling synthesized vanadium-based catalysts[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
[104] 罗邯予, 铈钛基催化剂上氯苯的催化燃烧性能研究[D]. 北京: 北京化工大学, 2019. . LUO H Y. Ctalytic combustion performance of chlorobenzene over ceria-titania-based complex metal oxides[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).