-
随着全球人口激增、城市化进程加快以及居民消费方式改变等,全世界每年产生超过20亿吨城市生活垃圾[1]。按照增长速度,2025年和2050年全球城市生活垃圾将分别达到22亿吨和42亿吨[2]。我国城市生活垃圾与工业固体废物年产量逐年增多,2018年我国生活垃圾年产量已达到2.28亿吨,工业固体废物年产量也一直维持在较高水平[3]。
由于固体废物产量日渐增多,因此处理固体废物成为一项艰巨的任务。处置固体废物的主要方式有卫生填埋、堆肥和焚烧[4]。其中,焚烧是目前较为被认可的一种固体废物处置技术[5],不仅可将固体废物质量减少70%,体积减少90%[6],还可以回收热能和电能[7]。2016年,全球约有1179座城市生活垃圾焚烧厂,总处理量为每天70万吨 [8]。2008年至2019年,我国垃圾焚烧厂的数量也在逐渐增多,从74座上升到389座[3],年焚烧量达到了1.02亿吨。在焚烧过程中会产生二噁英(polychlorinated dibenzo-p-dioxins and dibenzodurans, PCDD/Fs)、多氯联苯(polychlorinated biphenyl, PCBs)、多氯萘(polychlorinated naphthalenes, PCNs)、六氯苯(hexachlorobenzene)、五氯苯(pentachlorobenzene)和多环芳烃(polycyclic aromatic hydrocarbon, PAHs)等持久性有机污染物[9],由于这些持久性有机污染物具有较强致癌性、毒性、持久性以及生物累积性[10-11],因此被列入《关于持久性有机污染物的斯德哥尔摩公约》。其中PCDD/Fs与PCNs等的生成和排放显著相关[12],且PCBs与PCNs等结构有一定相似性。因此本文分析了代表性的污染物PCDD/Fs、PCBs和PAHs。这些污染物的产生与固废组分息息相关。
目前,国内外学者对单一城市生活垃圾焚烧产生有机污染物的研究相对较多,尤其是对PCDD/Fs的研究更加成熟。Zhu等[13]在2016年采集了中国北方地区6座垃圾焚烧厂的烟气样品,烟气中PCDD/Fs的排放浓度和毒性当量分别为0.11—2.53 ng·Nm−3和0.007—0.059 ng I-TEQ·Nm−3。有学者对国内15座焚烧炉进行采样分析,烟气中PCDD/Fs的毒性当量浓度范围为0.01—8.12 ng I-TEQ·Nm−3[14]。张怀强[15]对3座医疗废物焚烧厂的烟气样品进行监测,烟气中PCDD/Fs毒性当量范围为0.34—11.06 ng I-TEQ·Nm−3。刘劲松等[16]对我国7座医疗废物焚烧炉排放烟气中PCDD/Fs进行监测,其浓度范围为(5.93±2.10)—(67.52±8.24) ng I-TEQ·Nm−3。整体可以看出,不同类型固废焚烧产生的有机污染物的浓度水平存在差异。当前我国焚烧厂主要处理城市生活垃圾,而工业固体废物的处理也同样亟待解决。我国工业固废产量高、处置缺口大,生活垃圾则面临含水率高、热值低等问题[17]。经研究发现一般工业固废(建筑废弃物、生产边角料及废弃塑料、木材等)与生活垃圾混烧既能增加热值,又能起到减量化的作用[18]。因此生活垃圾与工业固废混烧的研究越来越引起人们的关注。
为了有效减少固体废物的数量和毒性,同时实现能源的高效回收,我国提出了可以将生活垃圾与一些危险废物或工业固废协同处置的法律法规。如《国家危险废物名录》的豁免管理清单中规定市政污泥、铜板、线路板、含铬皮革废碎料等危险废物可以与城市生活垃圾一同处置[19]。在《生活垃圾焚烧污染控制标准》中提到“在不影响生活垃圾焚烧炉污染物排放达标和焚烧炉正常运行的前提下,生活污水处理设施产生的污泥和一般工业固体废物可以进入生活垃圾焚烧炉进行焚烧处置”等[20]。焚烧对固体废物的热值有一定要求,根据联合国环境规划署(United Nations Environment Programme, UNEP)的规定,当垃圾的低位热值为3350—7100 kJ·kg−1时,适合焚烧处理[21]。当固体废物低位热值≤3350 kJ·kg−1时,需添加辅助燃料进行燃烧。而工业固废的热值较高,可以弥补生活垃圾热值低的缺点。因此,一些工业固废可以和城市生活垃圾一起处置。
本文主要对固体废物混烧中二噁英、多氯联苯和多环芳烃等有机污染物的形成机理和排放特征以及在焚烧过程中如何控制有机污染物生成进行了探究。
城市生活垃圾与工业有机固废协同处置中有机污染物生成特征及控制技术
Generation characteristics and control technology of organic pollutants during the co-combustion of municipal solid waste and industrial organic solid waste
-
摘要: 近年来固体废物产生量日益增多,而多种固体废物协同处置能够提高生活垃圾热值,实现固体废物的有效减容。为了有效减少有机污染物的排放,本文对在焚烧过程中二噁英、多氯联苯和多环芳烃的形成机理进行了探究,并着重阐明了不同固废(市政污泥与生活垃圾、木材与生活垃圾等)混烧产生有机污染物的排放特征以及关键影响因素。研究结果表明,固废种类、添加比例、组分、含水率等能够影响有机污染物的生成。较高的Cl和金属元素会促进有机污染物的生成,而S和N元素则有抑制效应。根据垃圾焚烧的工艺条件及有机污染物的生成机理,发现除“3T+E”外,改变固废性质、加入抑制剂及末端处置等方法也能有效控制有机污染物的产生。通过预处理可降低固废含水率提高热值。焚烧系统中可加入碱性化合物、硅铝复合添加剂、Mg(OH)2、硫酸锰、铂和钯等抑制剂来减少PCDD/Fs、PCBs和PAHs等有机污染物的生成。末端控制主要包含吸附和催化分解,其中催化分解技术更加稳定、去除效率更高,但目前催化剂的低温活性还有待进一步提高。整体来看,在清洁生产的大背景下,拓展不同种类固体废物间的混烧,可达到节约能源、减少污染物排放等目的,但不同固废混烧过程中有机污染物生成特征变化及控制机理还需进一步深入研究。Abstract: In recent years, the amount of solid wastes generated has been increasing, and the co-combustion of multiple solid wastes can increase the calorific value of domestic wastes and achieve effective volume reduction of solid wastes. In order to effectively reduce the emission of organic pollutants, this paper explores the formation mechanism of polychlorinated dibenzo-p-dioxins and dibenzodurans (PCDD/Fs), polychlorinated biphenyl (PCBs) and polycyclic aromatic hydrocarbon (PAHs) during the incineration, and focuses on the emission characteristics and key influencing factors of organic pollutants during the co-combustion of solid wastes (municipal sludge and municipal solid wastes, woods and municipal solid wastes, etc.). The type of solid wastes, addition ratio, composition, moisture content, etc. can affect the generation of organic pollutants. Higher levels of Cl and metal elements promote the formation of organic pollutants, while S and N elements have an inhibitory effect. According to the process conditions of waste incineration and the formation mechanism of organic pollutants, it has been found that in addition to "3T+E", methods such as changing the nature of solid wastes, adding inhibitors and terminal control can also effectively control the generation of organic pollutants. The moisture content of solid wastes can be reduced and the heating value can be increased through pretreatment. Alkaline compounds, silicon-aluminum composite additives, Mg(OH)2, manganese sulfate, platinum and palladium and other inhibitors can be added in the incineration system to reduce the generation of organic pollutants, such as PCDD/Fs, PCBs and PAHs. The control technology mainly includes adsorption and catalytic decomposition. The catalytic decomposition technology is more stable and the removal efficiency is higher. However, the low temperature activity of the current catalyst needs to be further improved. Overall, under the background of cleaner production, expanding the co-combustion of different types of solid wastes can achieve the goals of saving energy and reducing emissions of pollutants. However, the formation characteristics and control mechanism of organic pollutants during the co-combustion needs to be further studied.
-
Key words:
- solid waste /
- co-combustion /
- organic pollutants /
- control technology
-
表 1 不同固废在不同混烧比下的产物类型与浓度
Table 1. Sample types and concentrations of different solid wastes at different co-combustion ratios
固废类型
Types of solid waste温度
Temperature混烧比
Co-combustion
ratios有机物
Organic产物
Sample浓度/毒性当量
Concentration/TEQ文献
Reference生活垃圾 983—1010℃ — PCDD/Fs 炉渣 0.8 ng I-TEQ·kg−1 [55] 生活垃圾、市政污泥 5%市政污泥 1.2 ng I-TEQ·kg−1 10%市政污泥 0.5 ng I-TEQ·kg−1 15%市政污泥 0.4 ng I-TEQ·kg−1 生活垃圾 — PCDD/Fs 飞灰 1129.5 ng I-TEQ·kg−1 生活垃圾、市政污泥 5%市政污泥 1157.2 ng I-TEQ·kg−1 10%市政污泥 973.4 ng I-TEQ·kg−1 15%市政污泥 684.2 ng I-TEQ·kg−1 生活垃圾 860℃ — PCDD/Fs 烟气 0. 0087 ng I-TEQ·m−3 [56] 生活垃圾、市政污泥 15%市政污泥 0. 0047 ng I-TEQ·m−3 生活垃圾 950℃ — PCDD/Fs 烟气 [57] 生活垃圾、市政污泥 12.5%市政污泥 0.0137 ng I-TEQ·m−3 生活垃圾、市政污泥 — 5%市政污泥 PCDD/Fs 烟气 0.024 ng I-TEQ·m−3 [58] 生活垃圾、市政污泥 10%市政污泥 0.011 ng I-TEQ·m−3 生活垃圾、市政污泥 15%市政污泥 0.057 ng I-TEQ·m−3 ST 220—380℃ — PAHs 飞灰 9.6 mg·kg−1 [59] ST、生活垃圾 20%生活垃圾 (32±3.8) mg·kg−1 DC、生活垃圾 20%生活垃圾 (6.4±1.9)mg·kg−1 ST — PCBs 7.2 μg·kg−1 DC 220—380℃ — PCBs 飞灰 (10.6±2.4) μg·kg−1 [59] ST、生活垃圾 20%生活垃圾 (0.28±0.02)(WHO-TEQ) ng·kg−1 DC、生活垃圾 20%生活垃圾 (9.6±4.5)(WHO-TEQ) ng·kg−1 RW 140℃ — PCDD/Fs 烟气 22.6 ng·m−3 [60] RW、生活垃圾(含水量20%—25%) 25%生活垃圾 14.6 ng·m−3 RW、生活垃圾(含水量45%) 23.9 ng·m−3 榉木 — — PAHs (1.0±0.2) mg·kg−1 [61] 榉木、PET 7% PET (1.9±0.3) mg·kg−1 榉木、PE 7% PE (1.1±0.1) mg·kg−1 LMRDF 850℃ — PCDD/Fs 烟气 (3.54±0.94) ng I-TEQ·m−3 [62] RDF1 — (1.86±0.86) ng I-TEQ·m−3 RDF2 — (1.28±0.73) ng I-TEQ·m−3 LMRDF、RDF1 10% RDF1 (2.90±0.78 )ng I-TEQ·m−3 LMRDF、RDF1 20% RDF1 (2.54±1.24 )ng I-TEQ·m−3 LMRDF、RDF1 30% RDF1 (0.71±0.47) ng I-TEQ·m−3 LMRDF、RDF1 30%干燥的RDF1 (0.63±0.26 )ng I-TEQ·m−3 LMRDF、RDF1 750℃ 30% RDF1 (1.66±0.66) ng I-TEQ·m−3 LMRDF、RDF1 950℃ 30% RDF1 (5.20±1.56) ng I-TEQ·m−3 LMRDF 850℃ — 飞灰 (180.87±18.82) ng I-TEQ·kg−1 RDF1 — (7.50± 0.75 )ng I-TEQ·kg−1 RDF2 — (109.10±6.85 )ng I-TEQ·kg−1 LMRDF、RDF1 10% RDF1 (16.67±1.98) ng I-TEQ·kg−1 LMRDF、RDF1 20% RDF1 (31.89±3.62) ng I-TEQ·kg−1 LMRDF、RDF1 30% RDF1 (18.31±1.76 )ng I-TEQ·kg−1 LMRDF、RDF1 30%干燥的RDF1 (65.22±7.42 )ng I-TEQ·kg−1 LMRDF、RDF1 750℃ 30% RDF1 (59.43±6.72 )ng I-TEQ·kg−1 LMRDF、RDF1 950℃ 30% RDF1 (19.86±2.06 )ng I-TEQ·kg−1 注:LMRDF:填埋材料垃圾衍生燃料;RDF1:来自临子焚烧厂的垃圾衍生燃料;RDF2:吉林申飞环保能源有限公司的垃圾衍生燃料;ST:商业白木;DC:建筑木材;PET:聚乙烯与苯二甲酸酯瓶;PE:超市聚乙烯购物袋.
Note: LMRDF: landfill material refuse-derived fuel, RDF1: the experiment were collected from the Linzi incineration plant, RDF2: Jilin Shenfei Environmental Protection Energy, ST: commercial stemwood, DC: demolition and construction waste wood, PET: polyethylene terephthalate bottles, PE: supermarket polyethylene shopping bags. -
[1] KANHAR A H, CHEN S Q, WANG F. Incineration fly ash and its treatment to possible utilization: A review [J]. Energies, 2020, 13(24): 6681. doi: 10.3390/en13246681 [2] GU T B, YIN C G, MA W C, et al. Municipal solid waste incineration in a packed bed: A comprehensive modeling study with experimental validation [J]. Applied Energy, 2019, 247: 127-139. doi: 10.1016/j.apenergy.2019.04.014 [3] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社. 2007-2019. National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2007-2019(in Chinese)
[4] ZHANG Z G, YANG F, LIU J C, et al. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash [J]. Cement and Concrete Research, 2020, 137: 106200. doi: 10.1016/j.cemconres.2020.106200 [5] REN M H, LV Z Y, XU L, et al. Partitioning and removal behaviors of PCDD/Fs, PCBs and PCNs in a modern municipal solid waste incineration system [J]. Science of the Total Environment, 2020, 735: 139134. doi: 10.1016/j.scitotenv.2020.139134 [6] LUO H W, CHENG Y, HE D Q, et al. Review of leaching behavior of municipal solid waste incineration (MSWI) ash [J]. Science of the Total Environment, 2019, 668: 90-103. doi: 10.1016/j.scitotenv.2019.03.004 [7] 毛庚仁, 张涌新, 文雯, 等. 我国城市生活垃圾处理现状及焚烧法的可行性分析 [J]. 城市发展研究, 2010, 17(9): 12-16. MAO G R, ZHANG Y X, WEN W, et al. Analysis of municipal solid waste treatment status and the feasibility of incineration in China [J]. Urban Studies, 2010, 17(9): 12-16(in Chinese).
[8] LU J W, ZHANG S K, HAI J, et al. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions [J]. Waste Management, 2017, 69: 170-186. doi: 10.1016/j.wasman.2017.04.014 [9] 李诗媛, 别如山. 城市生活垃圾焚烧过程中二次污染物的生成与控制 [J]. 环境污染治理技术与设备, 2003(3): 63-67. LI S Y, BIE R S. Formation and control method of secondary pollutants from incineration of municipal solid waste [J]. Techniques and Equipment for Environmental Pollution Control, 2003(3): 63-67(in Chinese).
[10] 宋春莲. 多氯联苯/二恶英类化学污染物的环境行为及对人体健康的危害 [J]. 佳木斯大学学报(自然科学版), 2007, 25(2): 207-209. SONG C L. The environmental behavior of chemical contamination of polychlorinated biphenyl/ddioxi and the harm to human body [J]. Journal of Jiamusi University (Natural Science Edition), 2007, 25(2): 207-209(in Chinese).
[11] 于晓丽, 张江. 多环芳烃污染与防治对策 [J]. 油气田环境保护, 1996(4): 53-56. YU X L, ZHANG J. Pollution by multiring aromatic hydrocarbon and its preventive treatment strategy [J]. Environmental Protection of Oil & Gas Fields, 1996(4): 53-56(in Chinese).
[12] LIU G R, CAI Z W, ZHENG M H. Sources of unintentionally produced polychlorinated naphthalenes [J]. Chemosphere, 2014, 94: 1-12. doi: 10.1016/j.chemosphere.2013.09.021 [13] ZHU F, LI X F, LU J W, et al. Emission characteristics of PCDD/Fs in stack gas from municipal solid waste incineration plants in Northern China [J]. Chemosphere, 2018, 200: 23-29. doi: 10.1016/j.chemosphere.2018.02.092 [14] 郭颖. 固废处置中持久性自由基/二恶英的排放特性及检测研究[D]. 杭州: 浙江大学, 2014. GUO Y. Study on emission characteristics and detection of PCDD/fs and environment persistent free radicals during solid waste disposal[D]. Hangzhou: Zhejiang University, 2014(in Chinese).
[15] 张怀强. 医疗废物组分特性及其焚烧二噁英控制[D]. 杭州: 浙江大学, 2011. ZHANG H Q. Physical characteristics and dioxin emission control in medical wastes incineration[D]. Hangzhou: Zhejiang University, 2011(in Chinese).
[16] 刘劲松. 浙江省典型地区环境中持久性有机污染物污染现状, 分布规律和来源解析[D]. 杭州: 浙江大学, 2008. LIU J S. Level, distribution, and source resolution of persistent organic pollutants (POPs) in typical area in Zhejiang[D]. Hangzhou: Zhejiang University, 2011(in Chinese).
[17] 李煜. 我国城市生活垃圾焚烧处理发展分析 [J]. 中国环保产业, 2014(7): 36-38. doi: 10.3969/j.issn.1006-5377.2014.07.009 LI Y. Developing analysis on incineration treatment of urban domestic refuse in China [J]. China Environmental Protection Industry, 2014(7): 36-38(in Chinese). doi: 10.3969/j.issn.1006-5377.2014.07.009
[18] 戴勇, 余婷. 某生活垃圾焚烧厂掺烧一般工业有机固废烟气净化的应用 [J]. 机电工程技术, 2021, 50(4): 238-242. doi: 10.3969/j.issn.1009-9492.2021.04.066 DAI Y, YU T. Application of co-processing general industrial organic solid waste flue gas purification in a municipal waste incineration plant [J]. Mechanical & Electrical Engineering Technology, 2021, 50(4): 238-242(in Chinese). doi: 10.3969/j.issn.1009-9492.2021.04.066
[19] 中华人民共和国生态环境部. 国家危废豁免清单名录(2021版)[EB/OL]. [2020-11-25]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_810202.html. Ministry of Ecology and Environment of the People’s Republic of China. List of State Impervious Waste Exemptions(2021)[EB/OL]. [2020-11-25] . http://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/t20201127_810202.html.
[20] 中华人民共和国生态环境部. 生活垃圾焚烧污染控制标准[EB/OL]. [2014-07-01]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/gtfwwrkzbz/201405/t20140530_276307. shtml. Ministry of Ecology and Environment of the People’s Republic of China. Standards for Pollution Control of Domestic Waste Incineration [EB/OL]. [2014-07-01]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/gtfwwrkzbz/201405/t20140530_276307.shtml.
[21] 董晓丹, 张玉林. 上海市生活垃圾理化特性调查分析 [J]. 环境卫生工程, 2016, 24(6): 18-21. doi: 10.3969/j.issn.1005-8206.2016.06.006 DONG X D, ZHANG Y L. Investigation and analysis of physicochemical characteristics of municipal solid waste in Shanghai [J]. Environmental Sanitation Engineering, 2016, 24(6): 18-21(in Chinese). doi: 10.3969/j.issn.1005-8206.2016.06.006
[22] MCKAY G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review [J]. Chemical Engineering Journal, 2002, 86(3): 343-368. doi: 10.1016/S1385-8947(01)00228-5 [23] OOI T C, LU L M. Formation and mitigation of PCDD/Fs in iron ore sintering [J]. Chemosphere, 2011, 85(3): 291-299. doi: 10.1016/j.chemosphere.2011.08.020 [24] ALTARAWNEH M, DLUGOGORSKI B Z, KENNEDY E M, et al. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/fs) [J]. Progress in Energy and Combustion Science, 2009, 35(3): 245-274. doi: 10.1016/j.pecs.2008.12.001 [25] ÅMAND L E, KASSMAN H. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge [J]. Waste Management, 2013, 33(8): 1729-1739. doi: 10.1016/j.wasman.2013.03.022 [26] RYU J Y, MULHOLLAND J A, KIM D H, et al. Homologue and isomer patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans from phenol precursors: Comparison with municipal waste incinerator data [J]. Environmental Science & Technology, 2005, 39(12): 4398-4406. [27] HELL K, STIEGLITZ L, DINJUS E. Mechanistic aspects of the de-novo synthesis of PCDD/PCDF on model mixtures and MSWI fly ashes using amorphous 12C- and 13C-labeled carbon [J]. Environmental Science & Technology, 2001, 35(19): 3892-3898. [28] HUANG H, BUEKENS A. On the mechanisms of dioxin formation in combustion processes [J]. Chemosphere, 1995, 31(9): 4099-4117. doi: 10.1016/0045-6535(95)80011-9 [29] TUPPURAINEN K, HALONEN I, RUOKOJÄRVI P, et al. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review [J]. Chemosphere, 1998, 36(7): 1493-1511. doi: 10.1016/S0045-6535(97)10048-0 [30] 陈彤. 垃圾焚烧过程飞灰中二噁英的分布特性及控制技术初步研究[D]. 杭州: 浙江大学, 2003. CHEN T. Preliminary study on the distribution characteristics and control technology of dioxins in fly ash during waste incineration[D]. Hangzhou: Zhejiang University, 2003(in Chinese).
[31] ZHOU H, MENG A H, LONG Y Q, et al. A review of dioxin-related substances during municipal solid waste incineration [J]. Waste Management, 2015, 36: 106-118. doi: 10.1016/j.wasman.2014.11.011 [32] BABUSHOK V I, TSANG W. Gas-phase mechanism for dioxin formation [J]. Chemosphere, 2003, 51(10): 1023-1029. doi: 10.1016/S0045-6535(02)00716-6 [33] 张梦玫. 典型过渡金属化合物对二恶英异相催化生成影响及作用机理的研究[D]. 杭州: 浙江大学, 2020. ZHANG M M. Research on effect and reaction mechanisms of typical transition metal compounds on heterogeneous catalytic formation of dioxins[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
[34] SHAUB W M, TSANG W. Dioxin formation in incinerators [J]. Environmental Science & Technology, 1983, 17(12): 721-730. [35] BALLSCHMITER K, BRAUNMILLER I, NIEMCZYK R, et al. Reaction pathways for the formation of polychloro-dibenzodioxins (PCDD) and—dibenzofurans (PCDF) in combustion processes: II. Chlorobenzenes and chlorophenols as precursors in the formation of polychloro-dibenzodioxins and—dibenzofurans in flame chemistry [J]. Chemosphere, 1988, 17(5): 995-1005. doi: 10.1016/0045-6535(88)90070-7 [36] 杨元平, 杨莉莉, 刘国瑞, 等. 工业热过程中无意产生的持久性有机污染物生成机理 [J]. 中国科学:化学, 2021, 51(4): 401-409. doi: 10.1360/SSC-2020-0148 YANG Y P, YANG L L, LIU G R, et al. Formation mechanism of unintentionally produced persistent organic pollutants in industrial thermal processes [J]. Scientia Sinica Chimica, 2021, 51(4): 401-409(in Chinese). doi: 10.1360/SSC-2020-0148
[37] LI S Q, ZHANG Q Z. Mechanistic studies on the dibenzofuran and dibenzo-p-dioxin formation reactions from o-benzyne precursor [J]. Computational and Theoretical Chemistry, 2015, 1061: 80-88. doi: 10.1016/j.comptc.2015.03.006 [38] KHACHATRYAN L, LOMNICKI S, DELLINGER B. An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol [J]. Chemosphere, 2007, 68(9): 1741-1750. doi: 10.1016/j.chemosphere.2007.03.042 [39] SHIN K J, CHANG Y S. Characterization of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and heavy metals in fly ash produced from Korean municipal solid waste incinerators [J]. Chemosphere, 1999, 38(11): 2655-2666. doi: 10.1016/S0045-6535(98)00473-1 [40] PANDELOVA M, STANEV I, HENKELMANN B, et al. Correlation of PCDD/F and PCB at combustion experiments using wood and hospital waste. Influence of (NH4)2SO4 as additive on PCDD/F and PCB emissions [J]. Chemosphere, 2009, 75(5): 685-691. doi: 10.1016/j.chemosphere.2008.12.043 [41] LEMIEUX P M, LEE C W, RYAN J V, et al. Bench-scale studies on the simultaneous formation of PCBs and PCDD/Fs from combustion systems [J]. Waste Management, 2001, 21(5): 419-425. doi: 10.1016/S0956-053X(00)00133-1 [42] LIU G R, YANG L L, ZHAN J Y, et al. Concentrations and patterns of polychlorinated biphenyls at different process stages of cement kilns co-processing waste incinerator fly ash [J]. Waste Management, 2016, 58: 280-286. doi: 10.1016/j.wasman.2016.09.010 [43] BAI S T, CHANG S H, DUH J M, et al. Characterization of PCDD/fs and dioxin-like PCBs emitted from two woodchip boilers in Taiwan [J]. Chemosphere, 2017, 189: 284-290. doi: 10.1016/j.chemosphere.2017.09.080 [44] WEBER R, IINO F, IMAGAWA T, et al. Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators [J]. Chemosphere, 2001, 44(6): 1429-1438. doi: 10.1016/S0045-6535(00)00508-7 [45] SCHOONENBOOM M H, TROMP P C, OLIE K. The formation of coplanar PCBs, PCDDs and PCDFs in a fly ash model system [J]. Chemosphere, 1995, 30(7): 1341-1349. doi: 10.1016/0045-6535(95)00038-A [46] PANDELOVA M, LENOIR D, SCHRAMM K W. Correlation between PCDD/F, PCB and PCBz in coal/waste combustion. Influence of various inhibitors [J]. Chemosphere, 2006, 62(7): 1196-1205. doi: 10.1016/j.chemosphere.2005.07.068 [47] HIROTA M, TAKASHITA H, KATO J, et al. Elementary reaction path on polychlorinated biphenyls formation from polychlorinated benzenes in heterogeneous phase using ab initio molecular orbital calculation [J]. Chemosphere, 2003, 50(4): 457-467. doi: 10.1016/S0045-6535(02)00626-4 [48] MUGICA-ALVAREZ V, SANTIAGO-DE la ROSA N, FIGUEROA-LARA J, et al. Emissions of PAHs derived from sugarcane burning and processing in Chiapas and Morelos México [J]. Science of the Total Environment, 2015, 527/528: 474-482. doi: 10.1016/j.scitotenv.2015.04.089 [49] RAVINDRA K, SOKHI R, van GRIEKEN R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation [J]. Atmospheric Environment, 2008, 42(13): 2895-2921. doi: 10.1016/j.atmosenv.2007.12.010 [50] 万云洋, 朱迎佳, 费佳佳, 等. 环境中的多环芳烃结构及其危害 [J]. 油气田环境保护, 2017, 27(6): 23-26,56. doi: 10.3969/j.issn.1005-3158.2017.06.006 WAN Y Y, ZHU Y J, FEI J J, et al. The structure of polycyclic aromatic hydrocarbons and its danger in the environment [J]. Environmental Protection of Oil & Gas Fields, 2017, 27(6): 23-26,56(in Chinese). doi: 10.3969/j.issn.1005-3158.2017.06.006
[51] 秦林波. 医疗垃圾焚烧过程多环芳烃生成与控制研究[D]. 武汉: 武汉科技大学, 2017. QIN L B. The formation and reduction mechanism of PAHs during medical waste incineration[D]. Wuhan: Wuhan University of Science and Technology, 2017(in Chinese).
[52] LIU H M, WANG Y C, ZHAO S L, et al. Review on the current status of the co-combustion technology of organic solid waste (OSW) and coal in China [J]. Energy & Fuels, 2020, 34(12): 15448-15487. [53] MAASIKMETS M, KUPRI H L, TEINEMAA E, et al. Emissions from burning municipal solid waste and wood in domestic heaters [J]. Atmospheric Pollution Research, 2016, 7(3): 438-446. doi: 10.1016/j.apr.2015.10.021 [54] HAN Y, CHEN Y J, FENG Y L, et al. Different formation mechanisms of PAH during wood and coal combustion under different temperatures [J]. Atmospheric Environment, 2020, 222: 117084. doi: 10.1016/j.atmosenv.2019.117084 [55] 吕家扬, 林颖, 蔡凤珊, 等. 市政污泥与生活垃圾协同焚烧的二噁英排放特征及毒性当量平衡 [J]. 华南师范大学学报(自然科学版), 2020, 52(5): 31-40. LÜ J Y, LIN Y, CAI F S, et al. PCDD/fs emission and toxic equivalent balance of municipal sewage sludge cocombustion in a solid waste incinerator [J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 31-40(in Chinese).
[56] 陈兆林, 温俊明, 刘朝阳, 等. 市政污泥与生活垃圾混烧技术验证 [J]. 环境工程学报, 2014, 8(1): 324-328. CHEN Z L, WEN J M, LIU C Y, et al. Validity study on co-incineration of municipal sewage sludge and municipal solid waste [J]. Chinese Journal of Environmental Engineering, 2014, 8(1): 324-328(in Chinese).
[57] 余杰, 鱼红霞, 杜义鹏, 等. 城市垃圾焚烧厂直接掺烧城市污泥处置技术及其污染控制 [J]. 环境工程学报, 2020, 14(11): 3155-3161. doi: 10.12030/j.cjee.202001003 YU J, YU H X, DU Y P, et al. Disposal technology and pollution control of directly mixed incineration of municipal sludge in municipal solid waste incineration plant [J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 3155-3161(in Chinese). doi: 10.12030/j.cjee.202001003
[58] 陈海军, 严骁, 许榕发, 等. 市政污泥掺烧对生活垃圾焚烧设施烟气中污染物排放的影响 [J]. 安全与环境学报, 2018, 18(2): 766-772. CHEN H J, YAN X, XU R F, et al. Gaseous pollutant emissions from the mixed combustion of the municipal solid waste incinerator with sewage sludge [J]. Journal of Safety and Environment, 2018, 18(2): 766-772(in Chinese).
[59] EDO M, ORTUÑO N, PERSSON P E, et al. Emissions of toxic pollutants from co-combustion of demolition and construction wood and household waste fuel blends [J]. Chemosphere, 2018, 203: 506-513. doi: 10.1016/j.chemosphere.2018.03.203 [60] SVENSSON MYRIN E, PERSSON P E, JANSSON S. The influence of food waste on dioxin formation during incineration of refuse-derived fuels [J]. Fuel, 2014, 132: 165-169. doi: 10.1016/j.fuel.2014.04.083 [61] TOMSEJ T, HORAK J, TOMSEJOVA S, et al. The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1, 3, 5- triphenylbenzene [J]. Chemosphere, 2018, 196: 18-24. doi: 10.1016/j.chemosphere.2017.12.127 [62] CAI P, ZHAN M, MA H, et al. Pollutant emission during co-incineration of landfill material RDF in a lab-scale MSWI fluidized bed furnace [J]. Energy & Fuels, 2020, 34(2): 2346-2354. [63] 李洋洋, 金宜英, 聂永丰. 污泥与煤混烧动力学及常规污染物排放分析 [J]. 中国环境科学, 2014, 34(3): 604-609. LI Y Y, JIN Y Y, NIE Y F. Effects of sewage sludge on coal combustion using thermo-gravimetric kinetic analysis [J]. China Environmental Science, 2014, 34(3): 604-609(in Chinese).
[64] LIN H, MA X Q. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator [J]. Waste Management, 2012, 32(3): 561-567. doi: 10.1016/j.wasman.2011.10.032 [65] 严骁, 贾燕, 李淑圆, 等. 污泥掺烧对焚烧后固体废物污染物排放的影响 [J]. 安全与环境学报, 2018, 18(1): 285-291. YAN X, JIA Y, LI S Y, et al. Influence of the municipal solid residue on the municipal solid waste emission [J]. Journal of Safety and Environment, 2018, 18(1): 285-291(in Chinese).
[66] WIKSTRÖM E, RYAN S, TOUATI A, et al. Importance of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans [J]. Environmental Science & Technology, 2003, 37(6): 1108-1113. [67] ALTWICKER E R, KONDURI R K N V, MILLIGAN M S. The role of precursors in formation of polychloro-dibenzo-p-dioxins and polychloro-dibenzofurans during heterogeneous combustion [J]. Chemosphere, 1990, 20(10/11/12): 1935-1944. [68] MORENO A I, FONT R, CONESA J A. Characterization of gaseous emissions and ashes from the combustion of furniture waste [J]. Waste Management, 2016, 58: 299-308. doi: 10.1016/j.wasman.2016.09.046 [69] CHEN Z L, LIN X Q, LU S Y, et al. Formation pathways of PCDD/Fs during the Co-combustion of municipal solid waste and coal [J]. Chemosphere, 2018, 208: 862-870. doi: 10.1016/j.chemosphere.2018.06.044 [70] PRAWISUDHA P, NAMIOKA T, YOSHIKAWA K. Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment [J]. Applied Energy, 2012, 90(1): 298-304. doi: 10.1016/j.apenergy.2011.03.021 [71] LIN Y S, MA X Q, PENG X W, et al. Hydrothermal carbonization of typical components of municipal solid waste for deriving hydrochars and their combustion behavior [J]. Bioresource Technology, 2017, 243: 539-547. doi: 10.1016/j.biortech.2017.06.117 [72] CHEN W H, KUO P C, LIU S H, et al. Thermal characterization of oil palm fiber and Eucalyptus in torrefaction [J]. Energy, 2014, 71: 40-48. doi: 10.1016/j.energy.2014.03.117 [73] TCHAPDA A, PISUPATI S. A review of thermal co-conversion of coal and biomass/waste [J]. Energies, 2014, 7(3): 1098-1148. doi: 10.3390/en7031098 [74] SAEED L, TOHKA A, HAAPALA M, et al. Pyrolysis and combustion of PVC, PVC-wood and PVC-coal mixtures in a two-stage fluidized bed process [J]. Fuel Processing Technology, 2004, 85(14): 1565-1583. doi: 10.1016/j.fuproc.2003.11.045 [75] PENG N N, LI Y, LIU Z G, et al. Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion [J]. Science of the Total Environment, 2016, 565: 1201-1207. doi: 10.1016/j.scitotenv.2016.05.188 [76] RUOKOJÂRVI P, ASIKAINEN A, RUUSKANEN J, et al. Urea as a PCDD/F inhibitor in municipal waste incineration [J]. Journal of the Air & Waste Management Association, 2001, 51(3): 422-431. [77] CHANG M B, CHENG Y C, CHI K H. Reducing PCDD/F formation by adding sulfur as inhibitor in waste incineration processes [J]. Science of the Total Environment, 2006, 366(2/3): 456-465. [78] WU H L, LU S Y, LI X D, et al. Inhibition of PCDD/F by adding sulphur compounds to the feed of a hazardous waste incinerator [J]. Chemosphere, 2012, 86(4): 361-367. doi: 10.1016/j.chemosphere.2011.10.016 [79] SAMARAS P, BLUMENSTOCK M, LENOIR D, et al. PCDD/F prevention by novel inhibitors: addition of inorganic S- and N-compounds in the fuel before combustion [J]. Environmental Science & Technology, 2000, 34(24): 5092-5096. [80] 翁志华. 固体废物焚烧中二噁英控制措施探讨 [J]. 上海环境科学, 2011, 30(2): 82-84,89. WENG Z H. An approach to dioxin control measures in the process of solid waste incineration [J]. Shanghai Environmental Sciences, 2011, 30(2): 82-84,89(in Chinese).
[81] PANDELOVA M E, LENOIR D, KETTRUP A, et al. Primary measures for reduction of PCDD/F in co-combustion of lignite coal and waste: effect of various inhibitors [J]. Environmental Science & Technology, 2005, 39(9): 3345-3350. [82] LIU W B, ZHENG M H, ZHANG B, et al. Inhibition of PCDD/Fs formation from dioxin precursors by calcium oxide [J]. Chemosphere, 2005, 60(6): 785-790. doi: 10.1016/j.chemosphere.2005.04.020 [83] LI Q Q, LI L W, SU G J, et al. Synergetic inhibition of PCDD/F formation from pentachlorophenol by mixtures of urea and calcium oxide [J]. Journal of Hazardous Materials, 2016, 317: 394-402. doi: 10.1016/j.jhazmat.2016.05.090 [84] MA H T, DU N, LIN X Y, et al. Inhibition of element sulfur and calcium oxide on the formation of PCDD/Fs during co-combustion experiment of municipal solid waste [J]. Science of the Total Environment, 2018, 633: 1263-1271. doi: 10.1016/j.scitotenv.2018.03.282 [85] CHEN Z L, LIN X Q, LU S Y, et al. Suppressing formation pathway of PCDD/Fs by S-N-containing compound in full-scale municipal solid waste incinerators [J]. Chemical Engineering Journal, 2019, 359: 1391-1399. doi: 10.1016/j.cej.2018.11.039 [86] LUNDIN L, GOMEZ-RICO M F, FORSBERG C, et al. Reduction of PCDD, PCDF and PCB during co-combustion of biomass with waste products from pulp and paper industry [J]. Chemosphere, 2013, 91(6): 797-801. doi: 10.1016/j.chemosphere.2013.01.090 [87] SHI D Z, MA J Y, WANG H L, et al. Detoxification of PCBs in fly ash from MSW incineration by hydrothermal treatment with composite siliconaluminum additives and seed induction [J]. Fuel Processing Technology, 2019, 195: 106157. doi: 10.1016/j.fuproc.2019.106157 [88] WILKEN M, BÖSKE J, JAGER J, et al. PCDD/F, PCB, chlorobenzene and chlorophenol emissions of a Municipal Solid Waste Incineration plant (MSWI)—variation within a five day routine performance and influence of Mg(OH)2-addition [J]. Chemosphere, 1994, 29(9/10/11): 2039-2050. [89] WEI Y L, LEE J H. Manganese sulfate effect on PAH formation from polystyrene pyrolysis [J]. Science of the Total Environment, 1999, 228(1): 59-66. doi: 10.1016/S0048-9697(99)00023-6 [90] KAIVOSOJA T, VIRÉN A, TISSARI J, et al. Effects of a catalytic converter on PCDD/F, chlorophenol and PAH emissions in residential wood combustion [J]. Chemosphere, 2012, 88(3): 278-285. doi: 10.1016/j.chemosphere.2012.02.027 [91] CHANG F Y, CHEN J C, WEY M Y. The activity of Rh/Al2O3 and Rh-Na/Al2O3 catalysts for PAHs removal in the waste incineration processes: Effects of particulates, heavy metals, and acid gases [J]. Fuel, 2009, 88(9): 1563-1571. doi: 10.1016/j.fuel.2009.04.009 [92] 李素梅. 钢铁生产过程中UP-POPs的排放水平和特征研究[D]. 北京: 中国科学院大学, 2015. LI S M. Emission and Characterization of UP-POPs from Steelmaking Processes[D]. Beijing: University of Chinese Academy of Sciences, 2015(in Chinese).
[93] CHI K H, CHANG S H, HUANG C H, et al. Partitioning and removal of dioxin-like congeners in flue gases treated with activated carbon adsorption [J]. Chemosphere, 2006, 64(9): 1489-1498. doi: 10.1016/j.chemosphere.2005.12.072 [94] LIU W B, TIAN Z Y, LI H F, et al. Mono- to octa-chlorinated PCDD/fs in stack gas from typical waste incinerators and their implications on emission [J]. Environmental Science & Technology, 2013, 47(17): 9774-9780. [95] RUEGG H, SIGG A. Dioxin removal in a wet scrubber and dry particulate remover [J]. Chemosphere, 1992, 25(1/2): 143-148. [96] 李元成. 我国典型生活垃圾焚烧烟气中UPOPs催化降解中试研究[D]. 北京: 清华大学, 2016. LI Y C. Pilot test on catalytic destruction of UPOPs in flue gas from typical municipal waste incineratorin China[D]. Beijing: Tsinghua University, 2016(in Chinese).
[97] EL ASSAL Z, OJALA S, PITKÄAHO S, et al. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts [J]. Chemical Engineering Journal, 2017, 313: 1010-1022. doi: 10.1016/j.cej.2016.10.139 [98] KAN J W, DENG L, LI B, et al. Performance of co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation [J]. Applied Catalysis A:General, 2017, 530: 21-29. doi: 10.1016/j.apcata.2016.11.013 [99] DAI Q G, BAI S X, WANG J W, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene [J]. Applied Catalysis B:Environmental, 2013, 142/143: 222-233. doi: 10.1016/j.apcatb.2013.05.026 [100] 蒋威宇. V2O5-WO3/TiO2催化剂协同净化NOx与氯代芳香化合物的反应特征与副产物研究[D]. 杭州: 浙江大学, 2020. JIANG W Y. Reaction characteristics and byproducts analyses over V2O5-WO3/TiO2 catalyst in the synergistic elimination of NOx and chloroaromatics[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
[101] LILJELIND P, UNSWORTH J, MAASKANT O, et al. Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction [J]. Chemosphere, 2001, 42(5/6/7): 615-623. [102] HE F, LUO J Q, LIU S T. Novel metal loaded KIT-6 catalysts and their applications in the catalytic combustion of chlorobenzene [J]. Chemical Engineering Journal, 2016, 294: 362-370. doi: 10.1016/j.cej.2016.02.068 [103] 杜翠翠. 球磨法制备钒基催化剂催化降解氯苯及二噁英的基础研究[D]. 杭州: 浙江大学, 2018. DU C C. Fundamental research of catalytic decomposition of chlorobenzenes and dioxins over ball milling synthesized vanadium-based catalysts[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
[104] 罗邯予, 铈钛基催化剂上氯苯的催化燃烧性能研究[D]. 北京: 北京化工大学, 2019. . LUO H Y. Ctalytic combustion performance of chlorobenzene over ceria-titania-based complex metal oxides[D]. Beijing: Beijing University of Chemical Technology, 2019(in Chinese).