[1] LYU J, YANG L S, ZHANG L, et al. Antibiotics in soil and water in China-a systematic review and source analysis [J]. Environmental Pollution, 2020, 266: 115147. doi: 10.1016/j.envpol.2020.115147
[2] O’NEILL J. Tacking drug resistant infections globally: Final report and recommendations. The review on antimicrobial resistance[R/OL]. [2020-12-22].https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover. Pdf.
[3] 石红蕾, 周启星. 生物炭对污染物的土壤环境行为影响研究进展 [J]. 生态学杂志, 2014, 33(2): 486-494. SHI H L, ZHOU Q X. Research progresses in the effect of biochar on soil-environmental behaviors of pollutants [J]. Chinese Journal of Ecology, 2014, 33(2): 486-494(in Chinese).
[4] YUAN P, WANG J Q, PAN Y J, et al. Review of biochar for the management of contaminated soil: Preparation, application and prospect [J]. Science of the Total Environment, 2019, 659: 473-490. doi: 10.1016/j.scitotenv.2018.12.400
[5] KAMALI M, JAHANINAFARD D, MOSTAFAIE A, et al. Scientometric analysis and scientific trends on biochar application as soil amendment [J]. Chemical Engineering Journal, 2020, 395: 125128. doi: 10.1016/j.cej.2020.125128
[6] PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review [J]. Bioresource Technology, 2017, 246: 150-159. doi: 10.1016/j.biortech.2017.07.150
[7] 邓雅雯, 晏彩霞, 聂明华, 等. 生物炭对抗生素的吸附/解吸研究进展 [J]. 环境污染与防治, 2020, 42(3): 376-384. DENG Y W, YAN C X, NIE M H, et al. Study on the antibiotic adsorption/desorption of biochar: A review [J]. Environmental Pollution & Control, 2020, 42(3): 376-384(in Chinese).
[8] 何杨, 肖宇凡, 张建强. 生物炭阻控土壤中抗生素迁移的研究进展 [J]. 环境科学与技术, 2020, 43(3): 95-100. HE Y, XIAO Y F, ZHANG J Q. A review of biochar controlling antibiotics transport in soils [J]. Environmental Science & Technology, 2020, 43(3): 95-100(in Chinese).
[9] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[10] RICHARDSON B J, LAM P K S, MARTIN M. Emerging chemicals of concern: Pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China [J]. Marine Pollution Bulletin, 2005, 50(9): 913-920. doi: 10.1016/j.marpolbul.2005.06.034
[11] SARMAH A K, MEYER M T, BOXALL A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759. doi: 10.1016/j.chemosphere.2006.03.026
[12] XIE W Y, SHEN Q, ZHAO F J. Antibiotics and antibiotic resistance from animal manures to soil: A review [J]. European Journal of Soil Science, 2018, 69(1): 181-195. doi: 10.1111/ejss.12494
[13] 张宁, 李淼, 刘翔. 土壤中抗生素抗性基因的分布及迁移转化 [J]. 中国环境科学, 2018, 38(7): 2609-2617. doi: 10.3969/j.issn.1000-6923.2018.07.029 ZHANG N, LI M, LIU X. Distribution and transformation of antibiotic resistance genes in soil [J]. China Environmental Science, 2018, 38(7): 2609-2617(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.07.029
[14] 何燕, 朱冬, 王东, 等. 四川省稻田土壤的抗生素抗性基因多样性研究 [J]. 农业环境科学学报, 2020, 39(6): 1249-1258. doi: 10.11654/jaes.2019-1355 HE Y, ZHU D, WANG D, et al. Diversity of antibiotic resistance genes in paddy soils in Sichuan Province, China [J]. Journal of Agro-Environment Science, 2020, 39(6): 1249-1258(in Chinese). doi: 10.11654/jaes.2019-1355
[15] SHI W, LIU Y, LI J J, et al. Distribution pattern of antibiotic resistance genes and bacterial community in agricultural soil samples of Wuliangsuhai watershed. China [J]. Agriculture, Ecosystems & Environment, 2020, 295: 106884.
[16] SUN J T, JIN L, HE T T, et al. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China [J]. Science of the Total Environment, 2020, 740: 140001. doi: 10.1016/j.scitotenv.2020.140001
[17] ZHOU Y T, NIU L L, ZHU S Y, et al. Occurrence, abundance, and distribution of sulfonamide and tetracycline resistance genes in agricultural soils across China [J]. Science of the Total Environment, 2017, 599/600: 1977-1983. doi: 10.1016/j.scitotenv.2017.05.152
[18] GHIRARDINI A, GRILLINI V, VERLICCHI P. A review of the occurrence of selected micropollutants and microorganisms in different raw and treated manure - Environmental risk due to antibiotics after application to soil [J]. Science of the Total Environment, 2020, 707: 136118. doi: 10.1016/j.scitotenv.2019.136118
[19] JEONG C Y, WANG J J, DODLA S K, et al. Effect of biochar amendment on tylosin adsorption-desorption and transport in two different soils [J]. Journal of Environmental Quality, 2012, 41(4): 1185-1192. doi: 10.2134/jeq2011.0166
[20] JIANG C L, CAI H, CHEN L L, et al. Effect of forestry-waste biochars on adsorption of Pb(Ⅱ) and antibiotic florfenicol in red soil [J]. Environmental Science and Pollution Research, 2017, 24(4): 3861-3871. doi: 10.1007/s11356-016-8060-8
[21] 陈淼, 唐文浩, 葛成军, 等. 生物炭对环丙沙星在热带土壤中吸附行为的影响 [J]. 热带作物学报, 2015, 36(12): 2260-2268. doi: 10.3969/j.issn.1000-2561.2015.12.025 CHEN M, TANG W H, GE C J, et al. Effects of sugarcane bagasse-derived biochar on adsorption and desorption of ciprofloxacin in tropical soils [J]. Chinese Journal of Tropical Crops, 2015, 36(12): 2260-2268(in Chinese). doi: 10.3969/j.issn.1000-2561.2015.12.025
[22] 陈淼, 唐文浩, 葛成军, 等. 蔗渣生物炭对砖红壤吸附氧氟沙星的影响 [J]. 环境工程学报, 2015, 9(10): 5083-5090. doi: 10.12030/j.cjee.20151075 CHEN M, TANG W H, GE C J, et al. Effects of biochar made from bagasse on adsorption behavior of ofloxacin in latosols [J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 5083-5090(in Chinese). doi: 10.12030/j.cjee.20151075
[23] KIM H, KIM J, KIM M, et al. Sorption of sulfathiazole in the soil treated with giant Miscanthus-derived biochar: Effect of biochar pyrolysis temperature, soil pH, and aging period [J]. Environmental Science and Pollution Research, 2018, 25(26): 25681-25689. doi: 10.1007/s11356-017-9049-7
[24] LIU Z F, HAN Y T, JING M, et al. Sorption and transport of sulfonamides in soils amended with wheat straw-derived biochar: Effects of water pH, coexistence copper ion, and dissolved organic matter [J]. Journal of Soils and Sediments, 2017, 17(3): 771-779. doi: 10.1007/s11368-015-1319-8
[25] 李文斌, 陈芯怡, 邓红艳, 等. 外源生物炭对嘉陵江流域川渝段沿岸土壤四环素吸附特征的影响 [J]. 土壤通报, 2020, 51(2): 487-495. LI W B, CHEN X Y, DENG H Y, et al. Effects of exogenous biochar on tetracycline adsorption by different riverbank soils from Sichuan and Chongqing section of Jialing river [J]. Chinese Journal of Soil Science, 2020, 51(2): 487-495(in Chinese).
[26] 周志强, 刘琛, 杨红薇, 等. 生物质炭对磺胺类抗生素在坡耕地紫色土中吸附-解吸及淋溶过程的影响 [J]. 土壤, 2018, 50(2): 353-360. ZHOU Z Q, LIU C, YANG H W, et al. Effects of biochar application on sorption-desorption process and leaching behaviour of sulfonamide antibiotics [J]. Soils, 2018, 50(2): 353-360(in Chinese).
[27] 阴文敏, 关卓, 刘琛, 等. 生物炭施用及老化对紫色土中抗生素吸附特征的影响 [J]. 环境科学, 2019, 40(6): 2920-2929. YIN W M, GUAN Z, LIU C, et al. Effects of biochar application and ageing on the adsorption of antibiotics in purple soil [J]. Environmental Science, 2019, 40(6): 2920-2929(in Chinese).
[28] VITHANAGE M, RAJAPAKSHA A U, TANG X Y, et al. Sorption and transport of sulfamethazine in agricultural soils amended with invasive-plant-derived biochar [J]. Journal of Environmental Management, 2014, 141: 95-103. doi: 10.1016/j.jenvman.2014.02.030
[29] SRINIVASAN P, SARMAH A K. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: A spectroscopic investigation [J]. Science of the Total Environment, 2015, 502: 471-480. doi: 10.1016/j.scitotenv.2014.09.048
[30] 轩盼盼, 唐翔宇, 鲜青松, 等. 生物炭对紫色土中氟喹诺酮吸附-解吸的影响 [J]. 中国环境科学, 2017, 37(6): 2222-2231. doi: 10.3969/j.issn.1000-6923.2017.06.029 XUAN P P, TANG X Y, XIAN Q S, et al. Effects of biochar on adsorption-desorption of fluoroquinolones in purple soil [J]. China Environmental Science, 2017, 37(6): 2222-2231(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.06.029
[31] HE Y, LIU C, TANG X Y, et al. Biochar impacts on sorption-desorption of oxytetracycline and florfenicol in an alkaline farmland soil as affected by field ageing [J]. Science of the Total Environment, 2019, 671: 928-936. doi: 10.1016/j.scitotenv.2019.03.414
[32] 何杨, 唐翔宇, 张建强, 等. 生物炭墙对紫色土坡耕地中氟苯尼考迁移影响 [J]. 中国环境科学, 2018, 38(3): 1039-1046. doi: 10.3969/j.issn.1000-6923.2018.03.030 HE Y, TANG X Y, ZHANG J Q, et al. Effects of biochar-amended wall in a sloping farmland plot of purple soil on florfenicol transport [J]. China Environmental Science, 2018, 38(3): 1039-1046(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.03.030
[33] VITHANAGE M, RAJAPAKSHA A U, ZHANG M, et al. Acid-activated biochar increased sulfamethazine retention in soils [J]. Environmental Science and Pollution Research, 2015, 22(3): 2175-2186. doi: 10.1007/s11356-014-3434-2
[34] TEIXIDÓ M, HURTADO C, PIGNATELLO J J, et al. Predicting contaminant adsorption in black carbon (biochar)-amended soil for the veterinary antimicrobial sulfamethazine [J]. Environmental Science & Technology, 2013, 47(12): 6197-6205.
[35] LIU H Y, SONG C, ZHAO S, et al. Biochar-induced migration of tetracycline and the alteration of microbial community in agricultural soils [J]. Science of the Total Environment, 2020, 706: 136086. doi: 10.1016/j.scitotenv.2019.136086
[36] ZHANG G X, ZHAO Z H, ZHU Y E. Changes in abiotic dissipation rates and bound fractions of antibiotics in biochar-amended soil [J]. Journal of Cleaner Production, 2020, 256: 120314. doi: 10.1016/j.jclepro.2020.120314
[37] YE M, SUN M M, FENG Y F, et al. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues [J]. Journal of Hazardous Materials, 2016, 309: 219-227. doi: 10.1016/j.jhazmat.2015.10.074
[38] DUAN M L, LI H C, GU J, et al. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce [J]. Environmental Pollution, 2017, 224: 787-795. doi: 10.1016/j.envpol.2017.01.021
[39] JIAO W T, DU R J, YE M, et al. ‘Agricultural Waste to Treasure’-Biochar and eggshell to impede soil antibiotics/antibiotic resistant bacteria (genes) from accumulating in Solanum tuberosum L [J]. Environmental Pollution, 2018, 242: 2088-2095. doi: 10.1016/j.envpol.2018.06.059
[40] LI Y B, HE J Z, QI H N, et al. Impact of biochar amendment on the uptake, fate and bioavailability of pharmaceuticals in soil-radish systems [J]. Journal of Hazardous Materials, 2020, 398: 122852. doi: 10.1016/j.jhazmat.2020.122852
[41] CUI E P, GAO F, LIU Y, et al. Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: Proceed with caution [J]. Environmental Pollution, 2018, 240: 475-484. doi: 10.1016/j.envpol.2018.04.143
[42] CHEN Q L, FAN X T, ZHU D, et al. Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L [J]. Soil Biology and Biochemistry, 2018, 119: 74-82. doi: 10.1016/j.soilbio.2018.01.015
[43] YE M, SUN M M, ZHAO Y C, et al. Targeted inactivation of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa in a soil-lettuce system by combined polyvalent bacteriophage and biochar treatment [J]. Environmental Pollution, 2018, 241: 978-987. doi: 10.1016/j.envpol.2018.04.070
[44] SUN M M, YE M, ZHANG Z Y, et al. Biochar combined with polyvalent phage therapy to mitigate antibiotic resistance pathogenic bacteria vertical transfer risk in an undisturbed soil column system [J]. Journal of Hazardous Materials, 2019, 365: 1-8. doi: 10.1016/j.jhazmat.2018.10.093
[45] LI Y, WANG X J, LI J, et al. Effects of struvite-humic acid loaded biochar/bentonite composite amendment on Zn(II) and antibiotic resistance genes in manure-soil [J]. Chemical Engineering Journal, 2019, 375: 122013. doi: 10.1016/j.cej.2019.122013
[46] LI Y, WANG X J, WANG Y, et al. Struvite-supported biochar composite effectively lowers Cu bio-availability and the abundance of antibiotic-resistance genes in soil [J]. Science of the Total Environment, 2020, 724: 138294. doi: 10.1016/j.scitotenv.2020.138294
[47] RAJAPAKSHA A U, VITHANAGE M, LIM J E, et al. Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil [J]. Chemosphere, 2014, 111: 500-504. doi: 10.1016/j.chemosphere.2014.04.040
[48] CABAN M, FOLENTARSKA A, LIS H, et al. Critical study of crop-derived biochars for soil amendment and pharmaceutical ecotoxicity reduction [J]. Chemosphere, 2020, 248: 125976. doi: 10.1016/j.chemosphere.2020.125976
[49] DING J, YIN Y, SUN A Q, et al. Effects of biochar amendments on antibiotic resistome of the soil and collembolan gut [J]. Journal of Hazardous Materials, 2019, 377: 186-194. doi: 10.1016/j.jhazmat.2019.05.089
[50] LIANG J, TANG S Q, GONG J L, et al. Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil [J]. Journal of Hazardous Materials, 2020, 385: 121533. doi: 10.1016/j.jhazmat.2019.121533
[51] LIAO S H, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings [J]. Environmental Science & Technology, 2014, 48(15): 8581-8587.
[52] ZHU X M, CHEN B L, ZHU L Z, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review [J]. Environmental Pollution, 2017, 227: 98-115. doi: 10.1016/j.envpol.2017.04.032
[53] MASIELLO C A, CHEN Y, GAO X D, et al. Biochar and microbial signaling: Production conditions determine effects on microbial communication [J]. Environmental Science & Technology, 2013, 47(20): 11496-11503.
[54] GAO X D, CHENG H Y, VALLE I D, et al. Charcoal disrupts soil microbial communication through a combination of signal sorption and hydrolysis [J]. ACS Omega, 2016, 1(2): 226-233. doi: 10.1021/acsomega.6b00085
[55] JONES D L, MURPHY D V, KHALID M, et al. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated [J]. Soil Biology and Biochemistry, 2011, 43(8): 1723-1731. doi: 10.1016/j.soilbio.2011.04.018
[56] KIRBY R. Actinomycetes and lignin degradation [J]. Advances in Applied Microbiology, 2005, 58: 125-168.
[57] LEYS N M, BASTIAENS L, VERSTRAETE W, et al. Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil [J]. Applied Microbiology and Biotechnology, 2005, 66(6): 726-736. doi: 10.1007/s00253-004-1766-4