[1] DONG H Y, QIANG Z M, RICHARDSON S D. Formation of iodinated disinfection byproducts (I-DBPs) in drinking water: Emerging concerns and current issues [J]. Accounts of Chemical Research, 2019, 52(4): 896-905. doi: 10.1021/acs.accounts.8b00641
[2] DAVIS S N, FABRYKA-MARTIN J T, WOLFSBERG L E. Variations of bromide in potable ground water in the United States [J]. Ground Water, 2010, 42(6): 902-909.
[3] PAN Y, ZHANG X R, WAGNER E D, et al. Boiling of simulated tap water: Effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity [J]. Environmental Science & Technology, 2014, 48(1): 149-156.
[4] PAN Y, WANG Y, LI A M, et al. Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water [J]. Water Research, 2017, 112: 129-136. doi: 10.1016/j.watres.2017.01.037
[5] 杨永亮, 刘崴, 刘晓端, 等. 辽宁省西部和沈阳地区河水及地下水中溴的分布与污染特征 [J]. 环境化学, 2009, 28(6): 924-928. doi: 10.3321/j.issn:0254-6108.2009.06.029 YANG Y L, LIU W, LIU X D, et al. Distribution and contamination characteristics of bromine in surface water and ground water from the western Liaoning and Shenyang area [J]. Environmental Chemistry, 2009, 28(6): 924-928(in Chinese). doi: 10.3321/j.issn:0254-6108.2009.06.029
[6] KIDD J, BARRIOS A, APUL O, et al. Removal of bromide from surface water: Comparison between silver-impregnated graphene oxide and silver-impregnated powdered activated carbon [J]. Environmental Engineering Science, 2018, 35(9): 988-995. doi: 10.1089/ees.2017.0485
[7] RICHARDSON S D, THRUSTON A D, RAV-ACHA C, et al. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide [J]. Environmental Science & Technology, 2003, 37(17): 3782-3793.
[8] RICHARDSON S D, FASANO F, ELLINGTON J J, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water [J]. Environmental Science & Technology, 2008, 42(22): 8330-8338.
[9] RICHARDSON S D, PLEWA M J, WAGNER E D, et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research [J]. Mutation Research/Reviews in Mutation Research, 2007, 636(1-3): 178-242. doi: 10.1016/j.mrrev.2007.09.001
[10] CHISHOLM K, COOK A, BOWER C, et al. Risk of birth defects in Australian communities with high levels of brominated disinfection by-products [J]. Environmental Health Perspectives, 2008, 116(9): 1267-1273. doi: 10.1289/ehp.10980
[11] NIEUWENHUIJSEN M J, TOLEDANO M B, EATON N E, et al. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: A review [J]. Occupational and Environmental Medicine, 2000, 57(2): 73-85. doi: 10.1136/oem.57.2.73
[12] PLEWA M J, WAGNER E D. Charting a new path to resolve the adverse health effects of DBPs [M]. Washington: American Chemical Society, 2015: 3-23
[13] DOBARADARAN S, SHABANKAREH FARD E, TEKLE-RÖTTERING A, et al. Age-sex specific and cause-specific health risk and burden of disease induced by exposure to trihalomethanes (THMs) and haloacetic acids (HAAs) from drinking water: An assessment in four urban communities of Bushehr Province, Iran, 2017 [J]. Environmental Research, 2020, 182: 109062. doi: 10.1016/j.envres.2019.109062
[14] 刘晓琳, 郑唯韡, 韦霄, 等. 江苏省某水厂含碳、含氮和碘系消毒副产物现况调查 [J]. 中华预防医学杂志, 2012, 46(2): 133-138. doi: 10.3760/cma.j.issn.0253-9624.2012.02.009 LIU X L, ZHENG W W, WEI X, et al. Investigation on the levels of carbon-, nitrogen-, iodine-containing disinfection by-products in a water plant in Jiangsu Province, China [J]. Chinese Journal of Preventive Medicine, 2012, 46(2): 133-138(in Chinese). doi: 10.3760/cma.j.issn.0253-9624.2012.02.009
[15] 王姗姗. 辽宁省六城市出厂水中三卤甲烷类消毒副产物的调查 [C]//第十四届沈阳科学学术年会论文集(理工农医). 中共沈阳市委、沈阳市人民政府: 沈阳市科学技术协会, 2017: 677-681. WANG S S. Investigation of trihalomethanes disinfection by-products in six cities of Liaoning Province [C]// Proceedings of the 14th Shenyang Science Annual Conference (Science, engineering, agriculture and medicine). Shenyang municipal Party committee and Shenyang Municipal People's Government: Shenyang Science and Technology Association, 2017: 677-681 (in Chinese).
[16] 孟丽苹, 董兆敏, 胡建英. 全国自来水厂卤乙酸浓度调查、风险评估与标准建议 [J]. 中国环境科学, 2012, 32(4): 721-726. doi: 10.3969/j.issn.1000-6923.2012.04.023 MENG L P, DONG Z M, HU J Y. National survey and risk assessment of haloacetic acids in drinking water in China for reevaluation of the drinking water standards [J]. China Environmental Science, 2012, 32(4): 721-726(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.04.023
[17] DING H H, MENG L P, ZHANG H F, et al. Occurrence, profiling and prioritization of halogenated disinfection by-products in drinking water of China [J]. Environmental Science. Processes & Impacts, 2013, 15(7): 1424-1429.
[18] 董蕾, 王海燕, 蔡宏铨, 等. 我国六城市饮用水中含氮消毒副产物的现状调查 [J]. 环境与健康杂志, 2016, 33(3): 232-235. DONG L, WANG H Y, CAI H Q, et al. Investigation on nitrogenous disinfection by-products in drinking water in six cities, China [J]. Journal of Environment and Health, 2016, 33(3): 232-235(in Chinese).
[19] YU Y, RECKHOW D A. Formation and occurrence of N-chloro-2, 2-dichloroacetamide, a previously overlooked nitrogenous disinfection byproduct in chlorinated drinking waters [J]. Environmental Science & Technology, 2017, 51(3): 1488-1497.
[20] CHU W, GAO N, YIN D, et al. Trace determination of 13 haloacetamides in drinking water using liquid chromatography triple quadrupole mass spectrometry with atmospheric pressure chemical ionization [J]. Journal of chromatography A, 2012, 1235: 178-181. doi: 10.1016/j.chroma.2012.02.074
[21] ZHOU R, XU Z, ZHU J, et al. Determination of 10 Haloacetamides in drinking water by gas chromatography with automated solid phase extraction [J]. Journal of Chromatography B, 2020, 1150: 122191. doi: 10.1016/j.jchromb.2020.122191
[22] GLEZER V, HARRIS B, TAL N. Hydrolysis of haloacetonitriles: Linear free energy relationship, kinetics and products [J]. Water Research, 1999, 33(8): 1938-1948. doi: 10.1016/S0043-1354(98)00361-3
[23] 王莹, 陈泽智, 李爱民, 等. 13种新型极性苯酚类氯/溴代消毒副产物的生成机理 [J]. 环境化学, 2017, 36(10): 2089-2099. doi: 10.7524/j.issn.0254-6108.2017021501 WANG Y, CHEN Z Z, LI A M, et al. Formation mechanism of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water [J]. Environmental Chemistry, 2017, 36(10): 2089-2099(in Chinese). doi: 10.7524/j.issn.0254-6108.2017021501
[24] PLEWA M J, WAGNER E D, JAZWIERSKA P, et al. Halonitromethane drinking water disinfection byproducts:   chemical characterization and mammalian cell cytotoxicity and genotoxicity [J]. Environmental Science & Technology, 2004, 38(1): 62-68.
[25] KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts [J]. Environmental Science & Technology, 2006, 40(23): 7175-7185.
[26] HUANG F, RUAN M, YAN J, et al. An improved method for determining HNMs in drinking water [J]. Water Science and Technology:Water Supply, 2013, 13(5): 1257-1264. doi: 10.2166/ws.2013.135
[27] YANG M T, ZHANG X R. Halopyrroles: A new group of highly toxic disinfection byproducts formed in chlorinated saline wastewater [J]. Environmental Science & Technology, 2014, 48(20): 11846-11852.
[28] HUANG Y, LI H, ZHOU Q, et al. New phenolic halogenated disinfection byproducts in simulated chlorinated drinking water: Identification, decomposition, and control by ozone-activated carbon treatment [J]. Water Research, 2018, 146: 298-306. doi: 10.1016/j.watres.2018.09.031
[29] JEONG C H, POSTIGO C, RICHARDSON S D, et al. Occurrence and comparative toxicity of haloacetaldehyde disinfection byproducts in drinking water [J]. Environmental Science & Technology, 2015, 49(23): 13749-13759.
[30] GAO J N, PROULX F, RODRIGUEZ M J. Occurrence and spatio-temporal variability of halogenated acetaldehydes in full-scale drinking water systems [J]. The Science of the Total Environment, 2019, 693: 133517. doi: 10.1016/j.scitotenv.2019.07.323
[31] WEINBERG H, KRASNER S, RICHARDSON S, et al. The occurrence of disinfection by-products (DBPs) of health concern in drinking water: Results of a nationwide DBP occurrence study [R]. U. S. EPA, Washington, D. C. , 2002: EPA/600/R02/068.
[32] SOHN J, AMY G, YOON Y. Bromide ion incorporation into brominated disinfection by-products [J]. Water, Air, and Soil Pollution, 2006, 174(1/2/3/4): 265-277.
[33] ZHANG J Z, YU J W, AN W, et al. Characterization of disinfection byproduct formation potential in 13 source waters in China [J]. Journal of Environmental Sciences (China), 2011, 23(2): 183-188. doi: 10.1016/S1001-0742(10)60440-8
[34] WINID, BOGUMILA. Bromine and water quality - Selected aspects and future perspectives [J]. Applied Geochemistry, 2015, 63: 413-435. doi: 10.1016/j.apgeochem.2015.10.004
[35] CHANG E E, LIN Y P, CHIANG P C. Effects of bromide on the formation of THMs and HAAs [J]. Chemosphere, 2001, 43(8): 1029-1034. doi: 10.1016/S0045-6535(00)00210-1
[36] KOLB C, FRANCIS R A, VANBRIESEN J M. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk [J]. Journal of Environmental Sciences (China), 2017, 58: 191-207. doi: 10.1016/j.jes.2017.05.043
[37] ZHOU X L, ZHENG L L, CHEN S Y, et al. Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China [J]. Ecotoxicology and Environmental Safety, 2019, 171: 813-822. doi: 10.1016/j.ecoenv.2018.12.106
[38] CRIQUET J, RODRIGUEZ E M, ALLARD S, et al. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts: Electrophilic aromatic substitution and oxidation [J]. Water Research, 2015, 85: 476-486. doi: 10.1016/j.watres.2015.08.051
[39] ZHAI H Y, ZHANG X R, ZHU X H, et al. Formation of brominated disinfection byproducts during chloramination of drinking water: New polar species and overall kinetics [J]. Environmental Science & Technology, 2014, 48(5): 2579-2588.
[40] ZHAI H Y, ZHANG X R. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination [J]. Environmental Science & Technology, 2011, 45(6): 2194-2201.
[41] HASSAN K Z A, BOWER K C, MILLER C M. Iron oxide enhanced chlorine decay and disinfection by-product formation [J]. Journal of Environmental Engineering, 2006, 132(12): 1609-1616. doi: 10.1061/(ASCE)0733-9372(2006)132:12(1609)
[42] ROSSMAN L A, BROWN R A, SINGER P C. DBP formation kinetics in a simulated distribution system [J]. Water Research, 2001, 35(14): 3483-3489. doi: 10.1016/S0043-1354(01)00059-8
[43] 樊陈锋, 朱志良, 刘绍刚. 金属离子对在饮用水氯化过程中形成消毒副产物的影响的研究进展 [J]. 化学通报, 2011, 74(7): 612-616. FAN C F, ZHU Z L, LIU S G. Progress of the effect of metal ions on the formation of disinfection by-products during chlorination [J]. Chemistry, 2011, 74(7): 612-616(in Chinese).
[44] HOZALSKI R M, ZHANG L, ARNOLD W A. Reduction of haloacetic acids by Fe0:   implications for treatment and fate [J]. Environmental Science & Technology, 2001, 35(11): 2258-2263.
[45] YANG X, GUO W, ZHANG X, et al. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate [J]. Water Research, 2013, 47(15): 5856-5864. doi: 10.1016/j.watres.2013.07.010
[46] ZHA X, MA L, LIU Y. Reductive dehalogenation of brominated disinfection byproducts by iron based bimetallic systems [J]. RSC Advances, 2016, 6(20): 16323-16330. doi: 10.1039/C5RA26882F
[47] 刘立超. 金属离子对饮用水氯化消毒副产物影响的研究[D]. 天津: 河北工业大学, 2017. LIU L C. Effect of metal ions on chlorination disinfection by-products of drinking water [D]. Tianjin: Hebei University of Technology, 2017(in Chinese).
[48] 王怡, 塔娜, 安乌云. 饮用水中三卤甲烷的生成机理与影响因素研究进展 [J]. 环境污染与防治, 2020, 42(4): 500-506. WANG Y, TA N, AN W Y. Research progress on the formation mechanism and influencing factors of trihalomethanes in drinking water [J]. Environmental Pollution and Control, 2020, 42(4): 500-506(in Chinese).
[49] 陈梦杰, 张凤娥, 董良飞, 等. 供水管网中氯化消毒副产物健康风险评价 [J]. 常州大学学报(自然科学版), 2016, 28(2): 46-49,87. CHEN M J, ZHANG F E, DONG L F, et al. Health risk assessment of chlorinated disinfection by-products in water distribution system [J]. Journal of ChangZhou University (Natural Science Edition), 2016, 28(2): 46-49,87(in Chinese).
[50] HUNG Y C, WATERS B W, YEMMIREDDY V K, et al. pH effect on the formation of THM and HAA disinfection byproducts and potential control strategies for food processing [J]. Journal of Integrative Agriculture, 2017, 16(12): 2914-2923. doi: 10.1016/S2095-3119(17)61798-2
[51] LIU J Q, LI Y, JIANG J Y, et al. Effects of ascorbate and carbonate on the conversion and developmental toxicity of halogenated disinfection byproducts during boiling of tap water [J]. Chemosphere, 2020, 254: 126890. doi: 10.1016/j.chemosphere.2020.126890
[52] 魏源源, 刘燕, 代瑞华. 饮用水消毒溴代副产物及其健康风险 [J]. 化学通报, 2009, 72(12): 1051-1056. WEI Y Y, LIU Y, DAI R H. Brominated by-products of drinking water disinfection and their health risks [J]. Chemistry Bulletin, 2009, 72(12): 1051-1056(in Chinese).
[53] 朱有长, 刘敬雅, 赵尔格, 等. 饮用水消毒副产物比较分析与健康风险评估 [J]. 净水技术, 2019, 38(5): 45-50. ZHU Y C, LIU J Y, ZHAO E G, et al. Comparative analysis and health risk assessment of disinfection by-products (DBPs) in drinking water [J]. Water Purification Technology, 2019, 38(5): 45-50(in Chinese).
[54] ICHIHASHI K, TERANISHI K, ICHIMURA A. Brominated trihalomethane formation in halogenation of humic acid in the coexistence of hypochlorite and hypobromite ions [J]. Water Research, 1999, 33(2): 477-483. doi: 10.1016/S0043-1354(98)00227-9
[55] SIMPSON K L, HAYES K P. Drinking water disinfection by-products: An Australian perspective [J]. Water Research, 1998, 32(5): 1522-1528. doi: 10.1016/S0043-1354(97)00341-2
[56] NIKOLAOU A D, LEKKAS T D, KOSTOPOULOU M N, et al. Investigation of the behaviour of haloketones in water samples [J]. Chemosphere, 2001, 44(5): 907-912. doi: 10.1016/S0045-6535(00)00536-1
[57] 秦无双. 顶空气相色谱法测定自来水中6种卤代烃类消毒副产物残留 [J]. 分析仪器, 2020(2): 35-39. doi: 10.3969/j.issn.1001-232x.2020.02.008 QIN W S. Determination of six halogenated hydrocarbon disinfection by-products residues in tap water by headspace gas chromatography [J]. Analytical Instrumentation, 2020(2): 35-39(in Chinese). doi: 10.3969/j.issn.1001-232x.2020.02.008
[58] NIKOLAOU A D, LEKKAS T D, GOLFINOPOULOS S K, et al. Application of different analytical methods for determination of volatile chlorination by-products in drinking water [J]. Talanta, 2002, 56(4): 717-726. doi: 10.1016/S0039-9140(01)00613-0
[59] KUIVINEN J, JOHNSSON H. Determination of trihalomethanes and some chlorinated solvents in drinking water by headspace technique with capillary column gas-chromatography [J]. Water Research, 1999, 33(5): 1201-1208. doi: 10.1016/S0043-1354(98)00311-X
[60] GONSIOR M, MITCHELMORE C, HEYES A, et al. Bromination of marine dissolved organic matter following full scale electrochemical ballast water disinfection [J]. Environmental Science & Technology, 2015, 49(15): 9048-9055.
[61] ZHANG H F, ZHANG Y H, SHI Q, et al. Characterization of unknown brominated disinfection byproducts during chlorination using ultrahigh resolution mass spectrometry [J]. Environmental Science & Technology, 2014, 48(6): 3112-3119.
[62] LUEK J L, SCHMITT-KOPPLIN P, MOUSER P J, et al. Halogenated organic compounds identified in hydraulic fracturing wastewaters using ultrahigh resolution mass spectrometry [J]. Environmental Science & Technology, 2017, 51(10): 5377-5385.
[63] PAN Y, ZHANG X R. Four groups of new aromatic halogenated disinfection byproducts: Effect of bromide concentration on their formation and speciation in chlorinated drinking water [J]. Environmental Science & Technology, 2013, 47(3): 1265-1273.
[64] RICHARDSON S D, KIMURA S Y. Water analysis: Emerging contaminants and current issues [J]. Analytical Chemistry, 2016, 88(1): 546-582. doi: 10.1021/acs.analchem.5b04493
[65] TAN J, ALLARD S, GRUCHLIK Y, et al. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems [J]. The Science of the Total Environment, 2016, 541: 1572-1580. doi: 10.1016/j.scitotenv.2015.10.043
[66] PRESSMAN J G, RICHARDSON S D, SPETH T F, et al. Concentration, chlorination, and chemical analysis of drinking water for disinfection byproduct mixtures health effects research: US EPA's four lab study [J]. Environmental Science & Technology, 2010, 44(19): 7184-7192.
[67] HUA G H, RECKHOW D A. Determination of TOCl, TOBr and TOI in drinking water by pyrolysis and off-line ion chromatography [J]. Analytical and Bioanalytical Chemistry, 2006, 384(2): 495-504.
[68] YANG Y, KOMAKI Y, KIMURA S Y, et al. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines [J]. Environmental Science & Technology, 2014, 48(20): 12362-12369.
[69] KIMURA S Y, CUTHBERTSON A A, BYER J D, et al. The DBP exposome: Development of a new method to simultaneously quantify priority disinfection by-products and comprehensively identify unknowns [J]. Water Research, 2019, 148: 324-333. doi: 10.1016/j.watres.2018.10.057
[70] KRISTIANA I, MCDONALD S, TAN J, et al. Analysis of halogen-specific TOX revisited: Method improvement and application [J]. Talanta, 2015, 139: 104-110. doi: 10.1016/j.talanta.2015.02.029