[1] KÜMMERER K. Antibiotics in the aquatic environment - A review - Part I [J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086
[2] POLIANCIUC S I, GURZĂU A E, KISS B, et al. Antibiotics in the environment: Causes and consequences [J]. Medicine and Pharmacy Reports, 2020, 93(3): 231-240.
[3] LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review [J]. Environmental Pollution, 2017, 223: 161-169. doi: 10.1016/j.envpol.2017.01.003
[4] SAPKOTA A, SAPKOTA A R, KUCHARSKI M, et al. Aquaculture practices and potential human health risks: Current knowledge and future priorities [J]. Environment International, 2008, 34(8): 1215-1226. doi: 10.1016/j.envint.2008.04.009
[5] 侯力睿, 傅榆涵, 赵冲, 等. 兽药抗生素对生态环境的混合毒性研究进展 [J]. 环境化学, 2021, 40(1): 55-64. doi: 10.7524/j.issn.0254-6108.2020052502 HOU L R, FU Y H, ZHAO C, et al. Advance on combined toxicity of veterinary antibiotics on ecological environments [J]. Environmental Chemistry, 2021, 40(1): 55-64(in Chinese). doi: 10.7524/j.issn.0254-6108.2020052502
[6] GAO L H, SHI Y L, LI W H, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6): 665-671. doi: 10.1016/j.chemosphere.2011.11.019
[7] 张国栋, 董文平, 刘晓晖, 等. 我国水环境中抗生素赋存、归趋及风险评估研究进展 [J]. 环境化学, 2018, 37(7): 1491-1500. doi: 10.7524/j.issn.0254-6108.2017112003 ZHANG G D, DONG W P, LIU X H, et al. Occurrence, fate and risk assessment of antibiotics in water environment of China [J]. Environmental Chemistry, 2018, 37(7): 1491-1500(in Chinese). doi: 10.7524/j.issn.0254-6108.2017112003
[8] YANG X, FLOWERS R C, WEINBERG H S, et al. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant [J]. Water Research, 2011, 45(16): 5218-5228. doi: 10.1016/j.watres.2011.07.026
[9] YANG Y, OK Y S, KIM K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review [J]. Science of the Total Environment, 2017, 596/597: 303-320. doi: 10.1016/j.scitotenv.2017.04.102
[10] DONG H, GUO X T, YANG C, et al. Synthesis of g-C3N4 by different precursors under burning explosion effect and its photocatalytic degradation for tylosin [J]. Applied Catalysis B:Environmental, 2018, 230: 65-76. doi: 10.1016/j.apcatb.2018.02.044
[11] DU H W, YANG Z, TIAN Z Q, et al. Enhanced removal of trace antibiotics from turbid water in the coexistence of natural organic matters using phenylalanine-modified-chitosan flocculants: Effect of flocculants’ molecular architectures [J]. Chemical Engineering Journal, 2018, 333: 310-319. doi: 10.1016/j.cej.2017.09.171
[12] MIRZAEI A, CHEN Z, HAGHIGHAT F, et al. Removal of pharmaceuticals from water by Homo/heterogonous Fenton-type processes - A review [J]. Chemosphere, 2017, 174: 665-688. doi: 10.1016/j.chemosphere.2017.02.019
[13] HUANG H L, WANG X H, GE H, et al. Multifunctional magnetic cellulose surface-imprinted microspheres for highly selective adsorption of artesunate [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3334-3343.
[14] KAH M, SIGMUND G, XIAO F, et al. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials [J]. Water Research, 2017, 124: 673-692. doi: 10.1016/j.watres.2017.07.070
[15] GE H, HUANG H L, XU M, et al. Cellulose/poly(ethylene imine) composites as efficient and reusable adsorbents for heavy metal ions [J]. Cellulose, 2016, 23(4): 2527-2537. doi: 10.1007/s10570-016-0973-3
[16] SANTOS S C R, BACELO H A M, BOAVENTURA R A R, et al. Tannin-adsorbents for water decontamination and for the recovery of critical metals: Current state and future perspectives [J]. Biotechnology Journal, 2019, 14(12): 1900060. doi: 10.1002/biot.201900060
[17] CAO Y Y, QI X R, YAN H S. Selective adsorption of tannins over small polyphenols on cross-linked polyacrylamide hydrogel beads and their regeneration with hot water [J]. Reactive and Functional Polymers, 2020, 146: 104398. doi: 10.1016/j.reactfunctpolym.2019.104398
[18] XU Q H, WANG Y L, JIN L Q, et al. Adsorption of Cu (Ⅱ), Pb (Ⅱ) and Cr (Ⅵ) from aqueous solutions using black wattle tannin-immobilized nanocellulose [J]. Journal of Hazardous Materials, 2017, 339: 91-99. doi: 10.1016/j.jhazmat.2017.06.005
[19] DU Y, QIU W Z, WU Z L, et al. Water-triggered self-healing coatings of hydrogen-bonded complexes for high binding affinity and antioxidative property [J]. Advanced Materials Interfaces, 2016, 3(15): 1600167. doi: 10.1002/admi.201600167
[20] WANG G Z, CHEN Y, XU G Q, et al. Effective removing of methylene blue from aqueous solution by tannins immobilized on cellulose microfibers [J]. International Journal of Biological Macromolecules, 2019, 129: 198-206. doi: 10.1016/j.ijbiomac.2019.02.039
[21] 何南, 王振全, 董蕙, 等. 单宁酸-铁离子纳米薄膜的合成及应用现状 [J]. 环境化学, 2021, 40(11): 3553-3560. doi: 10.7524/j.issn.0254-6108.2020071901 HN N, WANG Z Q, DONG H, et al. Synthesis and application of tannic acid - iron ion nano films [J]. Environmental Chemistry, 2021, 40(11): 3553-3560(in Chinese). doi: 10.7524/j.issn.0254-6108.2020071901
[22] GUO J L, PING Y, EJIMA H, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks [J]. Angewandte Chemie International Edition, 2014, 53(22): 5546-5551. doi: 10.1002/anie.201311136
[23] ZHONG Q Z, PAN S J, RAHIM M A, et al. Spray assembly of metal-phenolic networks: Formation, growth, and applications [J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33721-33729.
[24] YAN W T, SHI M Q, DONG C X, et al. Applications of tannic acid in membrane technologies: A review [J]. Advances in Colloid and Interface Science, 2020, 284: 102267. doi: 10.1016/j.cis.2020.102267
[25] LIU X, ZHANG L F. Insight into the adsorption mechanisms of vanadium(Ⅴ) on a high-efficiency biosorbent (Ti-doped chitosan bead) [J]. International Journal of Biological Macromolecules, 2015, 79: 110-117. doi: 10.1016/j.ijbiomac.2015.04.065
[26] JIANG C L, JI Y F, SHI Y Y, et al. Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices [J]. Water Research, 2016, 106: 507-517. doi: 10.1016/j.watres.2016.10.025
[27] van DOORSLAER X, DEWULF J, van LANGENHOVE H, et al. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants [J]. Science of the Total Environment, 2014, 500/501: 250-269. doi: 10.1016/j.scitotenv.2014.08.075
[28] ZHAO X T, JIA N, CHENG L J, et al. Metal-polyphenol coordination networks: Towards engineering of antifouling hybrid membranes via in situ assembly [J]. Journal of Membrane Science, 2018, 563: 435-446. doi: 10.1016/j.memsci.2018.06.014
[29] WU H Q, XIE J D, MAO L. One-pot assembly tannic acid-titanium dual network coating for low-pressure nanofiltration membranes [J]. Separation and Purification Technology, 2020, 233: 116051. doi: 10.1016/j.seppur.2019.116051
[30] GAO X H, WANG Q, REN L L, et al. Metal-phenolic networks as a novel filler to advance multi-functional immunomodulatory biocomposites [J]. Chemical Engineering Journal, 2021, 426: 131825. doi: 10.1016/j.cej.2021.131825
[31] WANG R X, ZHAO X T, LAN Y Y, et al. In situ metal-polyphenol interfacial assembly tailored superwetting PES/SPES/MPN membranes for oil-in-water emulsion separation [J]. Journal of Membrane Science, 2020, 615: 118566. doi: 10.1016/j.memsci.2020.118566
[32] STRUSZCZYK H. Microcrystalline chitosan. I. preparation and properties of microcrystalline chitosan [J]. Journal of Applied Polymer Science, 1987, 33(1): 177-189. doi: 10.1002/app.1987.070330115
[33] CHEN J D, WANG H Y, GONG Y T, et al. Directly immobilizing a Ru–tannic acid linkage coordination complex on carbon cloth: An efficient and ultrastable catalyst for the hydrogen evolution reaction [J]. Journal of Materials Chemistry A, 2019, 7(18): 11038-11043. doi: 10.1039/C9TA02680K
[34] CHEN J Q, PAN S J, ZHOU J J, et al. Programmable permeability of metal-phenolic network microcapsules [J]. Chemistry of Materials, 2020, 32(16): 6975-6982. doi: 10.1021/acs.chemmater.0c02279
[35] HAO B C, WANG F, HUANG H, et al. Tannin foam immobilized with ferric ions for efficient removal of ciprofloxacin at low concentrations [J]. Journal of Hazardous Materials, 2021, 414: 125567. doi: 10.1016/j.jhazmat.2021.125567
[36] YANG C, WU H, YANG X, et al. Coordination-enabled one-step assembly of ultrathin, hybrid microcapsules with weak pH-response [J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9178-9184.
[37] GILLI P, PRETTO L, BERTOLASI V, et al. Predicting hydrogen-bond strengths from acid-base molecular properties. The pK(a) slide rule: Toward the solution of a long-lasting problem [J]. Accounts of Chemical Research, 2009, 42(1): 33-44. doi: 10.1021/ar800001k
[38] PENG C L, ZHONG Y H, MIN F F. Adsorption of alkylamine cations on montmorillonite (001) surface: A density functional theory study [J]. Applied Clay Science, 2018, 152: 249-258. doi: 10.1016/j.clay.2017.11.021
[39] 李竟先, 庄志强, 吴基球, 等. 水解-水热体系中同质异构TiO2纳米晶生成机理的分子模拟研究 [J]. 中国陶瓷, 2005, 41(5): 11-13,10. doi: 10.3969/j.issn.1001-9642.2005.05.004 LI J X, ZHUANG Z Q, WU J Q, et al. Computation researches of molecular simulation on the principle of producing tautomerism TiO2 nanometer crystal in hydrolytic-hydrothermal system [J]. China Ceramics, 2005, 41(5): 11-13,10(in Chinese). doi: 10.3969/j.issn.1001-9642.2005.05.004
[40] NEDELJKOVIĆ N V, NIKOLIĆ M V, MIJAJLOVIĆ M Ž, et al. Interaction of bioessential metal ions with quinolone antibiotics: Structural features and biological evaluation [J]. Inorganica Chimica Acta, 2021, 527: 120585. doi: 10.1016/j.ica.2021.120585
[41] UIVAROSI V. Metal complexes of quinolone antibiotics and their applications: An update [J]. Molecules (Basel, Switzerland), 2013, 18(9): 11153-11197. doi: 10.3390/molecules180911153
[42] 黄群莲, 邓以平, 徐绍友. 紫外分光光度法测定氧氟沙星的解离常数 [J]. 中国药房, 2010, 21(41): 3907-3909. HUANG Q L, DENG Y P, XU S Y. Determination of dissociation constants of ofloxacin by UV spectrophotometry [J]. China Pharmacy, 2010, 21(41): 3907-3909(in Chinese).
[43] GU X Y, TAN Y Y, TONG F, et al. Surface complexation modeling of coadsorption of antibiotic ciprofloxacin and Cu(Ⅱ) and onto goethite surfaces [J]. Chemical Engineering Journal, 2015, 269: 113-120. doi: 10.1016/j.cej.2014.12.114
[44] 王剑, 申伟, 胡小莉, 等. Pd(Ⅱ)对氟喹诺酮类抗生素的荧光猝灭作用及其分析应用[J]. 科学通报, 2014, 59(S1)∶328-336. WANG J, SHEN W, HU X L, et al. The fluorescence quenching of fluoroquinolones by palladium(Ⅱ) and its analytical application[J]. Chinese Science Bulletin, 2014, 59(Sup 1): 328-336(in Chinese).
[45] MA J, XIONG Y C, DAI X H, et al. Coadsorption behavior and mechanism of ciprofloxacin and Cu(Ⅱ) on graphene hydrogel wetted surface [J]. Chemical Engineering Journal, 2020, 380: 122387. doi: 10.1016/j.cej.2019.122387
[46] LANGMUIR I. The adsorption of gases on plane surfaces of glass, Mica and platinum [J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403. doi: 10.1021/ja02242a004
[47] FREUNDLICH H. Over the adsorption in solution [J]. Journal of Physical Chemistry, 1906, 57: 385-470.
[48] ANIRUDHAN T S, RADHAKRISHNAN P G. Chromium(Ⅲ) removal from water and wastewater using a carboxylate-functionalized cation exchanger prepared from a lignocellulosic residue [J]. Journal of Colloid and Interface Science, 2007, 316(2): 268-276. doi: 10.1016/j.jcis.2007.08.051
[49] HO Y S, MCKAY G, WASE D A J, et al. Study of the sorption of divalent metal ions on to peat [J]. Adsorption Science & Technology, 2000, 18(7): 639-650.
[50] LOW M J D. Kinetics of chemisorption of gases on solids [J]. Chemical Reviews, 1960, 60(3): 267-312. doi: 10.1021/cr60205a003
[51] YURDAKOÇ M, SEKI Y, KARAHAN S, et al. Kinetic and thermodynamic studies of boron removal by Siral 5, Siral 40, and Siral 80 [J]. Journal of Colloid and Interface Science, 2005, 286(2): 440-446. doi: 10.1016/j.jcis.2004.12.047
[52] WU F C, TSENG R L, JUANG R S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems [J]. Chemical Engineering Journal, 2009, 150(2/3): 366-373.
[53] FAN R Y, MIN H Y, HONG X X, et al. Plant tannin immobilized Fe3O4@SiO2 microspheres: A novel and green magnetic bio-sorbent with superior adsorption capacities for gold and palladium [J]. Journal of Hazardous Materials, 2019, 364: 780-790. doi: 10.1016/j.jhazmat.2018.05.061
[54] LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole [J]. Chemical Engineering Journal, 2014, 248: 128-134. doi: 10.1016/j.cej.2014.03.021
[55] TEIXIDÓ M, PIGNATELLO J J, BELTRÁN J L, et al. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar) [J]. Environmental Science & Technology, 2011, 45(23): 10020-10027.
[56] JIN J, FENG T Y, GAO R, et al. Ultrahigh selective adsorption of zwitterionic PPCPs both in the absence and presence of humic acid: Performance and mechanism [J]. Journal of Hazardous Materials, 2018, 348: 117-124. doi: 10.1016/j.jhazmat.2018.01.036
[57] GAO B Q, CHANG Q Q, CAI J, et al. Removal of fluoroquinolone antibiotics using Actinia-shaped lignin-based adsorbents: Role of the length and distribution of branched-chains [J]. Journal of Hazardous Materials, 2021, 403: 123603. doi: 10.1016/j.jhazmat.2020.123603