[1] QIAO J S, KONG X H, HU Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus [J]. Nature Communications, 2014, 5: 4475. doi: 10.1038/ncomms5475
[2] LI B S, LAI C, ZENG G M, et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: Synthesis, properties, modifications, and photocatalysis applications [J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(8): e1804565. doi: 10.1002/smll.201804565
[3] XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics [J]. Nature Communications, 2014, 5: 4458. doi: 10.1038/ncomms5458
[4] CHEN W, LI K W, WANG Y, et al. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells [J]. The Journal of Physical Chemistry Letters, 2017, 8(3): 591-598. doi: 10.1021/acs.jpclett.6b02843
[5] YANG Y, GAO J, ZHANG Z, et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells [J]. Advanced Materials, 2016, 28(40): 8937-8944. doi: 10.1002/adma.201602382
[6] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors [J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35
[7] BUSCEMA M, GROENENDIJK D J, BLANTER S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors [J]. Nano Letters, 2014, 14(6): 3347-3352. doi: 10.1021/nl5008085
[8] DU Y C, LIU H, DENG Y X, et al. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling [J]. ACS Nano, 2014, 8(10): 10035-10042. doi: 10.1021/nn502553m
[9] MAYORGA-MARTINEZ C C, SOFER Z, PUMERA M. Layered black phosphorus as a selective vapor sensor [J]. Angewandte Chemie, 2015, 54(48): 14317-14320. doi: 10.1002/anie.201505015
[10] ZHAO Q, MA W, PAN B, et al. Wrinkle-induced high sorption makes few-layered black phosphorus a superior adsorbent for ionic organic compounds [J]. Environmental Science:Nano, 2018, 5(6): 1454-1465. doi: 10.1039/C8EN00266E
[11] MU X Y, WANG J Y, BAI X T, et al. Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice [J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20399-20409.
[12] ZHANG X, ZHANG Z, ZHANG S, et al. Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms [J]. Small, 2017, 13(32): 1701210. doi: 10.1002/smll.201701210
[13] FOJTŮ M, BALVAN J, RAUDENSKÁ M, et al. Black phosphorus cytotoxicity assessments pitfalls: Advantages and disadvantages of metabolic and morphological assays [J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2019, 25(1): 349-360.
[14] XIONG Z Q, ZHANG X J, ZHANG S Y, et al. Bacterial toxicity of exfoliated black phosphorus nanosheets [J]. Ecotoxicology and Environmental Safety, 2018, 161: 507-514. doi: 10.1016/j.ecoenv.2018.06.008
[15] WU Q, YAO L L, ZHAO X C, et al. Cellular uptake of few-layered black phosphorus and the toxicity to an aquatic unicellular organism [J]. Environmental Science & Technology, 2020, 54(3): 1583-1592.
[16] LI P, ZENG L, GAO J, et al. Perturbation of normal algal growth by black phosphorus nanosheets: The role of degradation [J]. Environmental Science & Technology Letters, 2020, 7(1): 35-41.
[17] HUANG Y Q, WONG C K C, ZHENG J S, et al. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts [J]. Environment International, 2012, 42: 91-99. doi: 10.1016/j.envint.2011.04.010
[18] KARALIUS V P, HARBISON J E, PLANGE-RHULE J, et al. Bisphenol A (BPA) found in humans and water in three geographic regions with distinctly different levels of economic development [J]. Environmental Health Insights, 2014, 8: 1-3.
[19] WANG Z, LIU H Y, LIU S J. Low-dose bisphenol A exposure: A seemingly instigating carcinogenic effect on breast cancer [J]. Advanced Science (Weinheim, Baden Wurttemberg, Germany), 2017, 4(2): 1600248.
[20] XIAO C Y, WANG L H, ZHOU Q, et al. Hazards of bisphenol A (BPA) exposure: A systematic review of plant toxicology studies [J]. Journal of Hazardous Materials, 2020, 384: 121488. doi: 10.1016/j.jhazmat.2019.121488
[21] WU F C, TSENG R L, JUANG R S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics [J]. Chemical Engineering Journal, 2009, 153(1/2/3): 1-8.
[22] 温元波, 张陆军, 王宁宁, 等. 水化氯铝酸钙去除水中氟及其动力学研究 [J]. 应用化工, 2021, 50(2): 311-315. doi: 10.3969/j.issn.1671-3206.2021.02.008 WEN Y B, ZHANG L J, WANG N N, et al. Study on the removal of fluorine in water by hydrated calcium chloroaluminate and its kinetics [J]. Applied Chemical Industry, 2021, 50(2): 311-315(in Chinese). doi: 10.3969/j.issn.1671-3206.2021.02.008
[23] ÖZCAN A, ÖNCÜ E M, ÖZCAN A S. Adsorption of Acid Blue 193 from aqueous solutions onto DEDMA-sepiolite [J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 244-252.
[24] PARK Y, SUN Z M, AYOKO G A, et al. Bisphenol A sorption by organo-montmorillonite: Implications for the removal of organic contaminants from water [J]. Chemosphere, 2014, 107: 249-256. doi: 10.1016/j.chemosphere.2013.12.050
[25] ZHANG L, GAO L F, LI L X, et al. Negatively charged 2D black phosphorus for highly efficient covalent functionalization [J]. Materials Chemistry Frontiers, 2018, 2(9): 1700-1706. doi: 10.1039/C8QM00237A
[26] GAO B Q, LI P, YANG R, et al. Investigation of multiple adsorption mechanisms for efficient removal of ofloxacin from water using lignin-based adsorbents [J]. Scientific Reports, 2019, 9: 637. doi: 10.1038/s41598-018-37206-1
[27] 王朋, 肖迪, 梁妮, 等. 电荷辅助氢键的形成机制及环境效应研究进展 [J]. 材料导报, 2019, 33(5): 812-818. doi: 10.11896/cldb.201905013 WANG P, XIAO D, LIANG N, et al. Advances in formation mechanism and environmental effects of charge-assisted hydrogen bonds [J]. Materials Reports, 2019, 33(5): 812-818(in Chinese). doi: 10.11896/cldb.201905013
[28] WANG P, ZHANG D, TANG H, et al. New insights on the understanding of the high adsorption of bisphenol compounds on reduced graphene oxide at high pH values via charge assisted hydrogen bond [J]. Journal of Hazardous Materials, 2019, 371: 513-520. doi: 10.1016/j.jhazmat.2019.03.012
[29] LIN Y J, CHEN J J, CAO W Z, et al. Novel materials for Cr(VI) adsorption by magnetic titanium nanotubes coated phosphorene [J]. Journal of Molecular Liquids, 2019, 287: 110826. doi: 10.1016/j.molliq.2019.04.103
[30] 陈素清, 梁华定, 邱昀芳. 碳纳米管吸附水溶液中双酚A的热力学 [J]. 应用化学, 2009, 26(5): 571-575. doi: 10.3969/j.issn.1000-0518.2009.05.016 CHEN S Q, LIANG H D, QIU Y F. Thermodynamics of adsorption of carbon nanotubes for bisphenol A [J]. Chinese Journal of Applied Chemistry, 2009, 26(5): 571-575(in Chinese). doi: 10.3969/j.issn.1000-0518.2009.05.016
[31] WANG Z Y, YU X D, PAN B, et al. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes [J]. Environmental Science & Technology, 2010, 44(3): 978-984.
[32] ZHANG S Y, ZHANG X J, LEI L, et al. pH-dependent degradation of layered black phosphorus: Essential role of hydroxide ions [J]. Angewandte Chemie, 2019, 58(2): 467-471. doi: 10.1002/anie.201809989