-
Bare BPs是一种新型二维材料,具有高载流子迁移率[1]、强大的光吸收特性[2]、高比表面积以及各向异性[1, 3]等特性,目前已经应用于多个领域,如太阳能电池[4-5]、场效应晶体管[6-8]、传感器[9]和环境[10]。随着Bare BPs的广泛应用,Bare BPs的环境风险和潜在危害需要进行系统研究。目前有研究报道了Bare BPs的暴露导致各种类型哺乳类动物细胞的损伤[11-12]和死亡[13]。此外,Bare BPs还显示出了对环境生物的毒性,例如,Bare BPs对大肠杆菌和枯草芽孢杆菌的毒性[14] 、嗜热链球菌生长的抑制[15]以及对正常藻类生长的干扰[16]。由于Bare BPs具有高的理论比表面积和疏水表面进入到水环境后Bare BPs可能与有机污染物发生吸附作用,从而改变两者的迁移规律和环境风险,因此,探究Bare BPs对有机污染物的吸附行为对Bare BPs的环境风险评估有重要意义。
迄今为止,Bare BPs在水性环境中对有机污染物吸附的研究有限。Zhao等[10]报道了两种染料在Bare BPs的吸附行为,研究发现Bare BPs由于其褶皱机制具有高效吸附能力。然而,Bare BPs对其他种类有机污染物的吸附行为未见报道。
双酚A(BPA)是一种内分泌干扰物,主要用作生产聚碳酸酯塑料和环氧树脂的中间体[17-18]。 从2013年到2019年,全球BPA产量预计将以4.6%的年增长率增长[19]。 BPA的大量生产和频繁使用导致其在自然环境中的持续释放和广泛分布[18, 20]。
因此,本文以Bare BPs作为吸附剂,以BPA作为模型吸附质,利用吸附动力学模型和吸附等温模型,研究了Bare BPs对BPA的吸附行为,研究了不同的环境因素,包括pH、温度对Bare BPs吸附BPA的影响,结合透射电镜和原子力显微镜等手段进行了机制探讨。
黑磷纳米片对水中双酚A的吸附
Sorption of bisphenol A in water by bare black phosphorus nanosheets
-
摘要: 由于独特的理化性质,黑磷纳米片(Bare BPs)成为一种新型的二维纳米材料。Bare BPs有望在光电器件、催化和生物医学等领域得到广泛应用。目前,对于Bare BPs的环境风险研究不足。Bare BPs具有超高的理论比表面积和大量的疏水表面,理论上会与有机物污染物相结合形成复合污染,改变两者原有的环境行为和危害性,因此对Bare BPs与有机污染物的吸附行为和机制的系统研究尤为重要。本文采用电化学阳极剥离法制备了少层Bare BPs,以双酚A(BPA)作为模型污染物,系统研究了Bare BPs对BPA的吸附行为。结果表明,Bare BPs对BPA的吸附符合拟二级动力学模型,并且Bare BPs对BPA具有高吸附能力(Q0=839.3 mg·g-1),等温吸附呈非线性,符合Freundlich 模型。在酸性pH范围内,Bare BPs吸附量基本不变,而在碱性pH范围内吸附量波动较大,猜测存在负电辅助氢键((-)CAHB)机制。另外,热力学结果分析表明,在5—25 ℃范围内BPA在Bare BPs上的吸附行为是吸热的,高温有利于BPA在Bare BPs上的吸附。能量分布与非线性等温线一致,表明Bare BPs存在吸附BPA的异质位点。采用透射电镜(TEM)、原子力显微镜(AFM)等手段观察到Bare BPs吸附前后的形貌变化,吸附BPA了的Bare BPs存在聚集现象。Abstract: Due to the unique physical and chemical properties, bare black phosphorous nanosheets (Bare BPs) have become a new type of two-dimensional nanomaterials. Bare BPs is expected to be widely used in the fields of optoelectronic devices, catalysis and biomedicine. At present, there is insufficient research on the environmental risks of Bare BPs. Bare BPs have an ultra-high theoretical specific surface area and a large number of hydrophobic surfaces, which can theoretically combine with organic pollutants to form compound pollution, and changing the original environmental behavior and hazards of the two. Therefore, it is particularly important to systematically study the adsorption behavior and mechanism of Bare BPs with organic pollutants. In this paper, few-layer Bare BPs were prepared by electrochemical anode exfoliation method, and bisphenol A (BPA) was used as a model pollutant. The adsorption behavior of Bare BPs to BPA was systematically studied. The results show that the kinetic adsorption process of BPA on Bare BPs conform to the pseudo-kinetic model, and the Bare BPs have high adsorption capacity for BPA (Q0 = 839.3 mg·g-1), and the adsorption isotherm is nonlinear, which conforms to the Freundlich model. In the range of acidic pH, the adsorption capacity of Bare BPS was basically unchanged, while in the range of alkaline pH, the adsorption capacity fluctuated greatly, which suggested that the mechanism of negative electricity-assisted hydrogen bond ((-) CAHB) existed. In addition, the analysis of thermodynamic results shows that the adsorption behavior of BPA on Bare BPs was endothermic in the range of 5—25 ℃, and the high temperature was beneficial to the adsorption of BPA on Bare BPs. The energy distribution is consistent with the non-linear isotherm, indicating that the Bare BPs have heterogeneous sites for BPA adsorption. Using transmission electron microscopy (TEM), atomic force microscopy (AFM) and other means to observe the morphological changes before and after the absorption of Bare BPs, the Bare BPs that have adsorbed BPA had aggregation phenomenon.
-
Key words:
- bare black phosphorous /
- bisphenol A /
- sorption /
- pH /
- thermodynamics
-
图 2 (a) 拟一级动力学吸附曲线图;(b) 拟二级动力学吸附曲线图;(c) 粒子内扩散吸附曲线图;(d) 粒子内扩散模型初始特性曲线
Figure 2. (a) pseudo first-order kinetic adsorption curve diagram; (b) pseudo-secondary kinetic adsorption curve diagram; (c) intra-particle diffusion adsorption curve diagram; (d) intra-particle diffusion model initial characteristic curve
图 6 (a)Bare BPs的低倍TEM图;(b)加入NaCl后Bare BPs的低倍TEM图像;(c)吸附后Bare BPs的低倍TEM图像。(d)Bare BPs的AFM图;(e)加入NaCl后Bare BPs的AFM图像;(f)吸附后Bare BPs的AFM图像;(g—i)是对应的厚度分布。
Figure 6. (a)Low power TEM image of Bare BPs. (b)Low magnification TEM image of Bare BPs after adding NaCl. (c) Low magnification TEM image of Bare BPs after adsorption. (d)AFM image of Bare BPs. (e)AFM image of Bare BPs after adding NaCl. (f)AFM image of b Bare BPs after adsorption. (g—i)is the corresponding thickness distribution.
表 1 BPA基本理化参数
Table 1. Physicochemical properties of BPA
吸附质
SorbatespKa 分子量/ (g·mol−1)
Molecular weight溶解度/(mg·L−1)
SolubilitylgKow 分子结构 双酚A 9.59/11.3 228.3 129 3.32 表 2 BPA在Bare BPs的动力学参数
Table 2. Kinetic parameters of BPA in black phosphorus nanosheets
吸附质
AdsorbatePFOM PSOM IPDM K1(×10−3)
/min−1q1/
(mg·g−1)R2 K2(×10−3)
/min−1q2/
(mg·g−1)R2 Kp /
(mg·g−1 ·min−1)C/
(mg·g−1)R2 Ri BPA 2.28 588 0.835 7.47 588 0.999 1.10 574 0.543 0.01 表 3 Bare BPs吸附BPA的等温吸附参数
Table 3. Isothermal adsorption parameters of black phosphorus nanosheets adsorption of BPA
温度/K
TemperatureLM FM Kd/(L·g−1) KL Q0/(mg·g−1) R2 Kf n R2 0.01Cs 0.1Cs 278 0.0858 422.2 0.9120 50.9 0.475 0.9498 44.5 13.3 288 0.0649 611.8 0.9535 62.3 0.521 0.9440 55.2 18.3 298 0.0529 839.3 0.9741 80.1 0.535 0.9892 71.1 24.4 表 4 Bare BPs吸附BPA热力学参数
Table 4. black phosphorus nanosheets adsorption thermodynamic parameters of BPA
温度/K Temperature lnKf ∆G0/(kJ mol-−1) ∆H0/(kJ mol-−1) ∆S0/(J mol-−1 K-−1) 278K 3.93 -9.08 15.59 88.62 288K 4.13 -9.89 298K 4.38 -10.86 -
[1] QIAO J S, KONG X H, HU Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus [J]. Nature Communications, 2014, 5: 4475. doi: 10.1038/ncomms5475 [2] LI B S, LAI C, ZENG G M, et al. Black phosphorus, a rising star 2D nanomaterial in the post-graphene era: Synthesis, properties, modifications, and photocatalysis applications [J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(8): e1804565. doi: 10.1002/smll.201804565 [3] XIA F N, WANG H, JIA Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics [J]. Nature Communications, 2014, 5: 4458. doi: 10.1038/ncomms5458 [4] CHEN W, LI K W, WANG Y, et al. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells [J]. The Journal of Physical Chemistry Letters, 2017, 8(3): 591-598. doi: 10.1021/acs.jpclett.6b02843 [5] YANG Y, GAO J, ZHANG Z, et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells [J]. Advanced Materials, 2016, 28(40): 8937-8944. doi: 10.1002/adma.201602382 [6] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors [J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35 [7] BUSCEMA M, GROENENDIJK D J, BLANTER S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors [J]. Nano Letters, 2014, 14(6): 3347-3352. doi: 10.1021/nl5008085 [8] DU Y C, LIU H, DENG Y X, et al. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling [J]. ACS Nano, 2014, 8(10): 10035-10042. doi: 10.1021/nn502553m [9] MAYORGA-MARTINEZ C C, SOFER Z, PUMERA M. Layered black phosphorus as a selective vapor sensor [J]. Angewandte Chemie, 2015, 54(48): 14317-14320. doi: 10.1002/anie.201505015 [10] ZHAO Q, MA W, PAN B, et al. Wrinkle-induced high sorption makes few-layered black phosphorus a superior adsorbent for ionic organic compounds [J]. Environmental Science:Nano, 2018, 5(6): 1454-1465. doi: 10.1039/C8EN00266E [11] MU X Y, WANG J Y, BAI X T, et al. Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice [J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20399-20409. [12] ZHANG X, ZHANG Z, ZHANG S, et al. Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms [J]. Small, 2017, 13(32): 1701210. doi: 10.1002/smll.201701210 [13] FOJTŮ M, BALVAN J, RAUDENSKÁ M, et al. Black phosphorus cytotoxicity assessments pitfalls: Advantages and disadvantages of metabolic and morphological assays [J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2019, 25(1): 349-360. [14] XIONG Z Q, ZHANG X J, ZHANG S Y, et al. Bacterial toxicity of exfoliated black phosphorus nanosheets [J]. Ecotoxicology and Environmental Safety, 2018, 161: 507-514. doi: 10.1016/j.ecoenv.2018.06.008 [15] WU Q, YAO L L, ZHAO X C, et al. Cellular uptake of few-layered black phosphorus and the toxicity to an aquatic unicellular organism [J]. Environmental Science & Technology, 2020, 54(3): 1583-1592. [16] LI P, ZENG L, GAO J, et al. Perturbation of normal algal growth by black phosphorus nanosheets: The role of degradation [J]. Environmental Science & Technology Letters, 2020, 7(1): 35-41. [17] HUANG Y Q, WONG C K C, ZHENG J S, et al. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts [J]. Environment International, 2012, 42: 91-99. doi: 10.1016/j.envint.2011.04.010 [18] KARALIUS V P, HARBISON J E, PLANGE-RHULE J, et al. Bisphenol A (BPA) found in humans and water in three geographic regions with distinctly different levels of economic development [J]. Environmental Health Insights, 2014, 8: 1-3. [19] WANG Z, LIU H Y, LIU S J. Low-dose bisphenol A exposure: A seemingly instigating carcinogenic effect on breast cancer [J]. Advanced Science (Weinheim, Baden Wurttemberg, Germany), 2017, 4(2): 1600248. [20] XIAO C Y, WANG L H, ZHOU Q, et al. Hazards of bisphenol A (BPA) exposure: A systematic review of plant toxicology studies [J]. Journal of Hazardous Materials, 2020, 384: 121488. doi: 10.1016/j.jhazmat.2019.121488 [21] WU F C, TSENG R L, JUANG R S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics [J]. Chemical Engineering Journal, 2009, 153(1/2/3): 1-8. [22] 温元波, 张陆军, 王宁宁, 等. 水化氯铝酸钙去除水中氟及其动力学研究 [J]. 应用化工, 2021, 50(2): 311-315. doi: 10.3969/j.issn.1671-3206.2021.02.008 WEN Y B, ZHANG L J, WANG N N, et al. Study on the removal of fluorine in water by hydrated calcium chloroaluminate and its kinetics [J]. Applied Chemical Industry, 2021, 50(2): 311-315(in Chinese). doi: 10.3969/j.issn.1671-3206.2021.02.008
[23] ÖZCAN A, ÖNCÜ E M, ÖZCAN A S. Adsorption of Acid Blue 193 from aqueous solutions onto DEDMA-sepiolite [J]. Journal of Hazardous Materials, 2006, 129(1/2/3): 244-252. [24] PARK Y, SUN Z M, AYOKO G A, et al. Bisphenol A sorption by organo-montmorillonite: Implications for the removal of organic contaminants from water [J]. Chemosphere, 2014, 107: 249-256. doi: 10.1016/j.chemosphere.2013.12.050 [25] ZHANG L, GAO L F, LI L X, et al. Negatively charged 2D black phosphorus for highly efficient covalent functionalization [J]. Materials Chemistry Frontiers, 2018, 2(9): 1700-1706. doi: 10.1039/C8QM00237A [26] GAO B Q, LI P, YANG R, et al. Investigation of multiple adsorption mechanisms for efficient removal of ofloxacin from water using lignin-based adsorbents [J]. Scientific Reports, 2019, 9: 637. doi: 10.1038/s41598-018-37206-1 [27] 王朋, 肖迪, 梁妮, 等. 电荷辅助氢键的形成机制及环境效应研究进展 [J]. 材料导报, 2019, 33(5): 812-818. doi: 10.11896/cldb.201905013 WANG P, XIAO D, LIANG N, et al. Advances in formation mechanism and environmental effects of charge-assisted hydrogen bonds [J]. Materials Reports, 2019, 33(5): 812-818(in Chinese). doi: 10.11896/cldb.201905013
[28] WANG P, ZHANG D, TANG H, et al. New insights on the understanding of the high adsorption of bisphenol compounds on reduced graphene oxide at high pH values via charge assisted hydrogen bond [J]. Journal of Hazardous Materials, 2019, 371: 513-520. doi: 10.1016/j.jhazmat.2019.03.012 [29] LIN Y J, CHEN J J, CAO W Z, et al. Novel materials for Cr(VI) adsorption by magnetic titanium nanotubes coated phosphorene [J]. Journal of Molecular Liquids, 2019, 287: 110826. doi: 10.1016/j.molliq.2019.04.103 [30] 陈素清, 梁华定, 邱昀芳. 碳纳米管吸附水溶液中双酚A的热力学 [J]. 应用化学, 2009, 26(5): 571-575. doi: 10.3969/j.issn.1000-0518.2009.05.016 CHEN S Q, LIANG H D, QIU Y F. Thermodynamics of adsorption of carbon nanotubes for bisphenol A [J]. Chinese Journal of Applied Chemistry, 2009, 26(5): 571-575(in Chinese). doi: 10.3969/j.issn.1000-0518.2009.05.016
[31] WANG Z Y, YU X D, PAN B, et al. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes [J]. Environmental Science & Technology, 2010, 44(3): 978-984. [32] ZHANG S Y, ZHANG X J, LEI L, et al. pH-dependent degradation of layered black phosphorus: Essential role of hydroxide ions [J]. Angewandte Chemie, 2019, 58(2): 467-471. doi: 10.1002/anie.201809989