[1] FENG J L, ZHAI M X, LIU Q, et al. Residues of organochlorine pesticides (OCPs) in upper reach of the Huaihe River, East China [J]. Ecotoxicology and Environmental Safety, 2011, 74(8): 2252-2259. doi: 10.1016/j.ecoenv.2011.08.001
[2] WAN Y, HU J Y, LIU J L, et al. Fate of DDT-related compounds in Bohai Bay and its adjacent Haihe Basin, North China [J]. Marine Pollution Bulletin, 2005, 50(4): 439-445. doi: 10.1016/j.marpolbul.2004.11.037
[3] LIU S Y, CHANG J H, ZHAO Y, et al. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon [J]. Environmental Toxicology and Pharmacology, 2011, 32(3): 472-477. doi: 10.1016/j.etap.2011.09.002
[4] LI M, LI S Y, YAO T T, et al. Waterborne exposure to triadimefon causes thyroid endocrine disruption and developmental delay in Xenopus laevis tadpoles [J]. Aquatic Toxicology, 2016, 177: 190-197. doi: 10.1016/j.aquatox.2016.05.018
[5] 刘娜, 金小伟, 穆云松, 等. 三唑酮在水环境中的环境行为、毒性效应及生态风险 [J]. 生态毒理学报, 2017, 12(4): 65-75. LIU N, JIN X W, MU Y S, et al. Review of environmental behavior, toxicity and ecological risk of triadimefon in the aquatic environment [J]. Asian Journal of Ecotoxicology, 2017, 12(4): 65-75(in Chinese).
[6] 付岩. 典型农药在稻田及周围水环境中对微生物群落的影响研究[D]. 杭州: 浙江大学, 2015. FU Y. Effects of typical pesticides on microbial community diversity in paddy ecosystems[D]. Hangzhou: Zhejiang University, 2015(in Chinese).
[7] 刘娜, 金小伟, 薛荔栋, 等. 太湖流域药物和个人护理品污染调查与生态风险评估 [J]. 中国环境科学, 2017, 37(9): 3515-3522. doi: 10.3969/j.issn.1000-6923.2017.09.039 LIU N, JIN X W, XUE L D, et al. Concentrations distribution and ecological risk assessment of pharmaceuticals and personal care products in Taihu Lake [J]. China Environmental Science, 2017, 37(9): 3515-3522(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.09.039
[8] 游明华. 天然水中9种三唑类农药的检测方法及其非生物降解研究[D]. 厦门: 厦门大学, 2008. YOU M H. Determination and abiotic degradation of nine trizole pesticides in natural aquatic environments[D]. Xiamen: Xiamen University, 2008(in Chinese).
[9] 刘园, 杨卫萍, 魏琛, 等. 枯水期贵阳市饮用水源农药污染特征及健康风险 [J]. 地球与环境, 2015, 43(6): 653-659. LIU Y, YANG W P, WEI C, et al. Pollution characteristics and health risk assessment of pesticide in drinking water of Guiyang City, China during withered water period [J]. Earth and Environment, 2015, 43(6): 653-659(in Chinese).
[10] STAMATIS N, HELA D, TRIANTAFYLLIDIS V, et al. Spatiotemporal variation and risk assessment of pesticides in water of the lower catchment basin of acheloos river, western Greece [J]. The Scientific World Journal, 2013, 2013: 231610.
[11] HERMSEN S A B, van den BRANDHOF E J, van der VEN L T M, et al. Relative embryotoxicity of two classes of chemicals in a modified zebrafish embryotoxicity test and comparison with their in vivo potencies [J]. Toxicology in Vitro, 2011, 25(3): 745-753. doi: 10.1016/j.tiv.2011.01.005
[12] PAPIS E, BERNARDINI G, GORNATI R, et al. Triadimefon causes branchial arch malformations in Xenopus laevis embryos [J]. Environmental Science and Pollution Research International, 2006, 13(4): 251-255. doi: 10.1065/espr2006.01.014
[13] 刘少颖. 三唑酮对斑马鱼的胚胎发育和内分泌—生殖毒性[D]. 杭州: 浙江大学, 2011. LIU S Y. Embryonic developmental and endocrine-reproductive toxicity of triadimefon on zebrafish[D]. Hangzhou: Zhejiang University, 2011(in Chinese).
[14] 范博, 樊明, 刘征涛, 等. 稀有鮈鲫物种敏感性及其在生态毒理学与水质基准中的应用 [J]. 环境科学研究, 2019, 32(7): 1153-1161. FAN B, FAN M, LIU Z T, et al. Species sensitivity and application in ecotoxicology and water quality criterion for Gobiocypris rarus [J]. Research of Environmental Sciences, 2019, 32(7): 1153-1161(in Chinese).
[15] WALKER Q D, MAILMAN R B. Triadimefon and triadimenol: Effects on monoamine uptake and release [J]. Toxicology and Applied Pharmacology, 1996, 139(2): 227-233. doi: 10.1006/taap.1996.0161
[16] ROSS J A, LEAVITT S A. Analysis of the mutations induced by conazole fungicides in vivo [J]. Mutagenesis, 2010, 25(3): 231-234. doi: 10.1093/mutage/gep068
[17] ROSS J A, BLACKMAN C F, THAI S F, et al. A potential microRNA signature for tumorigenic conazoles in mouse liver [J]. Molecular Carcinogenesis, 2010, 49(4): 320-323.
[18] 周明毅. 紫外辐照过硫酸钠降解水中有机氯农药的研究[D]. 贵阳: 贵州大学, 2019. ZHOU M Y. Degradation of organochlorine pesticides in water by UV irradiation-activated sodium persulfate process[D]. Guiyang: Guizhou University, 2019(in Chinese).
[19] 周明毅, 魏琛, 盛贵尚, 等. 紫外活化过硫酸钠降解水中三唑酮的效能 [J]. 环境工程学报, 2019, 13(4): 810-817. doi: 10.12030/j.cjee.201810017 ZHOU M Y, WEI C, SHENG G S, et al. Degradation of triadimefon in water by UV irradiation-activated sodium persulfate process [J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 810-817(in Chinese). doi: 10.12030/j.cjee.201810017
[20] YE B, LI Y, CHEN Z, et al. Degradation of polyvinyl alcohol (PVA) by UV/chlorine oxidation: Radical roles, influencing factors, and degradation pathway [J]. Water Research, 2017, 124: 381-387. doi: 10.1016/j.watres.2017.05.059
[21] KONG X J, JIANG J, MA J, et al. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products [J]. Water Research, 2016, 90: 15-23. doi: 10.1016/j.watres.2015.11.068
[22] GUO K H, WU Z H, SHANG C, et al. Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water [J]. Environmental Science & Technology, 2017, 51(18): 10431-10439.
[23] HUANG N, WANG T, WANG W L, et al. UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation [J]. Water Research, 2017, 114: 246-253. doi: 10.1016/j.watres.2017.02.015
[24] QIN L, LIN Y L, XU B, et al. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes [J]. Water Research, 2014, 65: 271-281. doi: 10.1016/j.watres.2014.07.041
[25] JIN J, EL-DIN M G, BOLTON J R. Assessment of the UV/Chlorine process as an advanced oxidation process [J]. Water Research, 2011, 45(4): 1890-1896. doi: 10.1016/j.watres.2010.12.008
[26] FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system [J]. Environmental Science & Technology, 2014, 48(3): 1859-1868.
[27] MÁRTIRE D O, ROSSO J A, BERTOLOTTI S, et al. Kinetic study of the reactions of chlorine atoms and Cl2•- radical anions in aqueous solutions. II. toluene, benzoic acid, and chlorobenzene [J]. The Journal of Physical Chemistry A, 2001, 105(22): 5385-5392. doi: 10.1021/jp004630z
[28] WATTS M J, LINDEN K G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water [J]. Water Research, 2007, 41(13): 2871-2878. doi: 10.1016/j.watres.2007.03.032
[29] CONNICK R E. The interaction of hydrogen peroxide and hypochlorous acid in acidic solutions containing chloride ion [J]. Journal of the American Chemical Society, 1947, 69(6): 1509-1514. doi: 10.1021/ja01198a074
[30] BOLTON J R, STEFAN M I, SHAW P S, et al. Determination of the quantum yields of the potassium ferrioxalate and potassium iodide-iodate actinometers and a method for the calibration of radiometer detectors [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2011, 222(1): 166-169. doi: 10.1016/j.jphotochem.2011.05.017
[31] NAG S K, DUREJA P. Photodegradation of azole fungicide triadimefon [J]. Journal of Agricultural and Food Chemistry, 1997, 45(1): 294-298. doi: 10.1021/jf960074n
[32] Da SILVA J P, da SILVA A M, KHMELINSKII I V, et al. Photophysics and photochemistry of azole fungicides: Triadimefon and triadimenol [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2001, 142(1): 31-37. doi: 10.1016/S1010-6030(01)00489-0
[33] Da SILVA J P, Da SILVA A M. Comparative study of the dissipation of triadimefon in greenhouse and field conditions [J]. Toxicological & Environmental Chemistry, 1998, 66(1/2/3/4): 229-236.
[34] Da SILVA J P, VIEIRA FERREIRA L F, da SILVA A M. Aqueous photochemistry of pesticides triadimefon and triadimenol [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 154(2/3): 293-298.
[35] WU Z H, FANG J Y, XIANG Y Y, et al. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways [J]. Water Research, 2016, 104: 272-282. doi: 10.1016/j.watres.2016.08.011
[36] ALFASSI Z B, HUIE R E, MOSSERI S, et al. Kinetics of one-electron oxidation by the ClO radical [J]. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 1988, 32(1): 85-88. doi: 10.1016/1359-0197(88)90018-5
[37] WANG W L, WU Q Y, HUANG N, et al. Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species [J]. Water Research, 2016, 98: 190-198. doi: 10.1016/j.watres.2016.04.015
[38] BEN W W, SHI Y W, LI W W, et al. Oxidation of sulfonamide antibiotics by chlorine dioxide in water: Kinetics and reaction pathways [J]. Chemical Engineering Journal, 2017, 327: 743-750. doi: 10.1016/j.cej.2017.06.157
[39] EL NAJJAR N H, DEBORDE M, JOURNEL R, et al. Aqueous chlorination of levofloxacin: Kinetic and mechanistic study, transformation product identification and toxicity [J]. Water Research, 2013, 47(1): 121-129. doi: 10.1016/j.watres.2012.09.035
[40] 刘毅华, 郭正元, 杨仁斌, 等. 三唑酮的酸性、中性和碱性水解动力学研究 [J]. 农村生态环境, 2005, 21(1): 67-68,71. LIU Y H, GUO Z Y, YANG R B, et al. Hydrolysis dynamics of triadimefon in aquatic environment different in pH value [J]. Rural Eco-Environment, 2005, 21(1): 67-68,71(in Chinese).
[41] 冯家豪. 次氯酸钠氧化降解水杨酸的反应研究[D]. 新乡: 河南师范大学, 2015. FENG J H. Study on the reaction of salicylic acid oxidation by sodium hypochlorite[D]. Xinxiang: Henan Normal University, 2015(in Chinese).
[42] HEEB M B, CRIQUET J, ZIMMERMANN-STEFFENS S G, et al. Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds—A critical review [J]. Water Research, 2014, 48: 15-42. doi: 10.1016/j.watres.2013.08.030
[43] 卢宁, 黄鑫, 高乃云, 等. 青草沙水库原水中的溴离子和溴酸盐生成势 [J]. 净水技术, 2011, 30(3): 10-12,19. doi: 10.3969/j.issn.1009-0177.2011.03.003 LU N, HUANG X, GAO N Y, et al. Bromonium ion and its bromate formation potential in raw water of Qingcaosha Reservoir [J]. Water Purification Technology, 2011, 30(3): 10-12,19(in Chinese). doi: 10.3969/j.issn.1009-0177.2011.03.003
[44] MAGAZINOVIC R S, NICHOLSON B C, MULCAHY D E, et al. Bromide levels in natural waters: Its relationship to levels of both chloride and total dissolved solids and the implications for water treatment [J]. Chemosphere, 2004, 57(4): 329-335. doi: 10.1016/j.chemosphere.2004.04.056
[45] CHENG S S, ZHANG X R, YANG X, et al. The multiple role of bromide ion in PPCPs degradation under UV/chlorine treatment [J]. Environmental Science & Technology, 2018, 52(4): 1806-1816.
[46] CRIQUET J, RODRIGUEZ E M, ALLARD S, et al. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts - Electrophilic aromatic substitution and oxidation [J]. Water Research, 2015, 85: 476-486. doi: 10.1016/j.watres.2015.08.051
[47] Von GUNTEN U, OLIVERAS Y. Advanced oxidation of bromide-containing waters: Bromate formation mechanisms [J]. Environmental Science & Technology, 1998, 32(1): 63-70.
[48] GILBERT B C, STELL J K, PEET W J, et al. Generation and reactions of the chlorine atom in aqueous solution [J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1988, 84(10): 3319. doi: 10.1039/f19888403319
[49] 何群英. UV/氯高级氧化技术处理内分泌干扰素泼尼松龙[D]. 长沙: 湖南大学, 2018. HE Q Y. Treatment of endocrine disruptor prednisolone by UV/chlorine advanced oxidation process[D]. Changsha: Hunan University, 2018(in Chinese).
[50] MINISCI F, CITTERIO A, Giordano C. Electron-transfer processes: Peroxydisulfate, a useful and versatile reagent in organic chemistry [J]. Accounts of Chemical Research, 1983, 16: 27-32. doi: 10.1021/ar00085a005