[1] |
NAG R, CUMMINS E. Human health risk assessment of lead (Pb) through the environmental-food pathway[J]. Science of the Total Environment, 2021, 15: 1168-1182.
|
[2] |
LOU J, JIN L, WU N, et al. DNA damage and oxidative stress in human B lymphoblastoid cells after combined exposure to hexavalent chromium and nickel compounds[J]. Food and Chemical Toxicology, 2013, 55: 535-540.
|
[3] |
LI X, ZHANG B, LI N, et al. Zebrafish neurobehavioral phenomics applied as the behavioral warning methods for fingerprinting endocrine disrupting effect by lead exposure at environmentally relevant level[J]. Chemosphere, 2019, 231: 315-325. doi: 10.1016/j.chemosphere.2019.05.146
|
[4] |
CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67: 489-512. doi: 10.1146/annurev-arplant-043015-112301
|
[5] |
中华人民共和国国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国环境科学出版社, 2003.
|
[6] |
蔡良圣, 林君, 辛青, 等. 电化学传感器监测水中痕量铜离子[J]. 中国环境科学, 2020, 40(8): 3394-3400. doi: 10.3969/j.issn.1000-6923.2020.08.017
|
[7] |
YAN S R, FOROUGHI M M, SAFAEI M, et al. A review: Recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies[J]. International Journal of Biological Macromolecules, 2020, 155: 184-207. doi: 10.1016/j.ijbiomac.2020.03.173
|
[8] |
SARFO D K, IZAKE E L, OʹMULLANE A P, et al. Molecular recognition and detection of Pb(II) ions in water by aminobenzo-18-crown-6 immobilised onto a nanostructured SERS substrate[J]. Sensors and Actuators B:Chemical, 2018, 255: 1945-1952. doi: 10.1016/j.snb.2017.08.223
|
[9] |
OZDEMIR M. A novel chromogenic molecular sensing platform for highly sensitive and selective detection of Cu2+ ions in aqueous environment[J]. Journal of Photochemistry & Photobiology A:Chemistry, 2019, 369: 54-69.
|
[10] |
NAIK L, MARIDEVARMATH C V, THIPPESWAMY M S, et al. A highly selective and sensitive thiophene substituted 1, 3, 4-oxadiazole based turn-off fluorescence chemosensor for Fe2+ and turn on fluorescence chemosensor for Ni2+ and Cu2+ detection[J]. Materials Chemistry and Physics, 2021, 260: 63-75.
|
[11] |
HE Y B, ZHOU W, QIAN G D, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43: 5657-5679. doi: 10.1039/C4CS00032C
|
[12] |
RAZAVI S A A, MASOOMI M Y, ISLAMOGLU T, et al. Improvement of methane-framework interaction by controlling pore size and functionality of pillared MOFs[J]. Inorganic Chemistry, 2017, 56: 2581-2588. doi: 10.1021/acs.inorgchem.6b02758
|
[13] |
RAZAVI S A A, MASOOMI A. Function-structure relationship in metal-organic frameworks for mild, green, and fast catalytic C-C bond formation[J]. Inorganic Chemistry, 2019, 58: 14429-14439. doi: 10.1021/acs.inorgchem.9b01819
|
[14] |
MOROZAN A, JAOUEN F. Metal organic frameworks for electrochemical applications[J]. Energy & Environmental Science, 2012, 5: 9269-9290.
|
[15] |
RAZAVI S A A, MORSALI A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap[J]. Coordination Chemistry Reviews, 2020, 415: 213299-213342. doi: 10.1016/j.ccr.2020.213299
|
[16] |
李孜旋. 荧光功能NH2-MIL-53(Al)纳米片及其复合材料用于水中离子检测研究[D]. 合肥: 中国科学技术大学, 2021.
|
[17] |
LIU Y, MA L N, SHI W J, et al. Four alkaline earth metal (Mg, Ca, Sr, Ba)-based MOFs as multiresponsive fluorescent sensors for Fe3+, Pb2+ and Cu2+ ions in aqueous solution[J]. Journal of Solid State Chemistry, 2019, 227: 636-647.
|
[18] |
LI L, CHEN Q, NIU Z G, et al. Lanthanide metal-organic frameworks assembled from a fluorene-based ligand: selective sensing of Pb2+ and Fe3+ ions[J]. Journal of Materials Chemistry C, 2016, 4: 1900-1905. doi: 10.1039/C5TC04320D
|
[19] |
HAO J, LIU F, LIU N, et al. Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal-organic frameworks[J]. Sensor and Actuators B:Chemical, 2017, 245: 641-647. doi: 10.1016/j.snb.2017.02.029
|
[20] |
XU X, YAN B. Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metaleorganic framework hybrids with carbon dots and Eu3+[J]. Journal of Materials Chemistry C, 2016, 4: 1543-1549. doi: 10.1039/C5TC04002G
|
[21] |
WANG H, YAN B. N-GQDs and Eu3+ co-encapsulated anionic MOFs: Two-dimensional luminescent platform for decoding benzene homologues[J]. Dalton Transactions, 2017, 46(21): 7098-7105. doi: 10.1039/C7DT01352C
|
[22] |
YAO C, XU Y, XIA Z. A carbon dot-encapsulated UiO-type metal organic framework as a multifunctional fluorescent sensor for temperature, metal ion and pH detection[J]. Journal of Materials Chemistry C, 2018, 6(16): 4396-4399. doi: 10.1039/C8TC01018H
|
[23] |
BANERJEE D, HU Z C, LI J. Luminescent metal-organic frameworks as explosive sensors[J]. Dalton Transactions, 2014, 43: 10668-10685. doi: 10.1039/C4DT01196A
|
[24] |
LV S W, LIU J M, LI C Y, et al. A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions[J]. Chemical Engineering Journal, 2019, 375: 122111-122121. doi: 10.1016/j.cej.2019.122111
|
[25] |
DUAN M, GUAN Z, MA Y J, et al. A novel catalyst of MIL-101(Fe) doped with Co and Cu as persulfate activator: Synthesis, characterization, and catalytic performance[J]. Chemical Papers, 2018, 72: 235-250. doi: 10.1007/s11696-017-0276-7
|
[26] |
FAZAELI R, ALIYAN H, MOGHADAM, et al. Nano-rod catalysts: Building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around vanadium oxide ships[J]. Journal of Molecular Catalysis A:Chemical, 2013, 374-375: 46-52. doi: 10.1016/j.molcata.2013.03.020
|
[27] |
MU Z, HUA J H, YANG Y L. N, S, I co-doped carbon dots for folic acid and temperature sensing and applied to cellular imaging[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 224: 117444-117453. doi: 10.1016/j.saa.2019.117444
|
[28] |
HASAN Z, KHAN N A, JHUNG S H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks[J]. Chemical Engineering Journal, 2016, 284: 1406-1413. doi: 10.1016/j.cej.2015.08.087
|
[29] |
WU L, ZHANG X F, LI Z Q, et al. A new sensor based on amino-functionalized zirconium metal-organic framework for detection of Cu2+ in aqueous solution[J]. Inorganic Chemistry Communications, 2016, 74: 22-25. doi: 10.1016/j.inoche.2016.10.031
|
[30] |
王雨霏. 碳点@ZIF-8复合材料的制备与性能研究[D]. 长春: 吉林大学, 2021.
|
[31] |
胥静. 镧系金属有机框架材料的合成及其在荧光传感中的应用[D]. 南充: 西华师范大学, 2020.
|
[32] |
LI B Z, SUO T Y, XIE S Y, et al. Rational design, synthesis, and applications of carbon dots@metal-organic frameworks (CD@MOF) based sensors[J]. Trends in Analytical Chemistry, 2021, 135: 116163. doi: 10.1016/j.trac.2020.116163
|