-
铅(Pb)是一种普遍存在且具有生理毒性和生物蓄积性的重金属[1],低浓度暴露也会对人体和生活环境造成永久性损害[2-3],被公认为最具毒性的金属之一[4]。铅离子主要来源于铅冶炼、电池制造、印刷和采矿等行业。根据地表水环境质量标准,Ⅴ类水中Pb2+的含量为不高于0.1 mg·L−1[5]。目前,重金属检测方法包括原子光谱法、色谱法、电化学法、表面增强拉曼光谱法等[6-8]。这些方法灵敏度高、重现性好,但存在预处理复杂、耗时、设备昂贵等缺点[9]。与之相比,荧光检测法具有速度快、操作简单、价格低廉等优点[10],适用于偏远分散水源的检测以及突发环境事件的应急检测。因此,开发一种便捷原位检测铅离子的方法势在必行。
金属-有机框架(MOFs)是一种新型的微孔材料,它通过金属离子或金属簇与有机配体之间的配位进行组装,在吸附和分离[11-12]、催化[13]、光电及电化学[14]等方面被广泛使用。MOFs不仅具有表面积大、可结合位点多、设计性强等特点[15],而且具有良好的荧光性能。已有研究[15-16]表明,基于MOFs的荧光传感器可以与重金属离子选择性结合,与Fe3+、Cu2+、Pb2+、Cr2O72+和CrO42+等结合后具有敏感的荧光淬灭响应。近年来,有研究者利用这种效应,开展了铅离子荧光法检测相关研究。LIU等[17]通过合成碱土金属有机框架[Ca2(µ10-L)(EtOH)]n,利用荧光淬灭机制检测Pb2+,检测限达69.4 µmol·L−1。LI等[18]合成的基于氟烯基的镧系元素金属-有机框架([Eu2(FDC)3DMA(H2O)3]·DMA·4.5H2O),作为荧光探针可以快速选择性检测水相中的铅离子,检测限为8.22 µmol·L−1。现已报道的荧光探针存在灵敏度较低的问题,故制备灵敏高效的荧光探针具有十分重要的现实意义。
碳点(CDs)是一种新型的量子点,大量研究[19-21]表明,CDs@MOFs复合材料是可调可设计的荧光探针,对各种目标分析物具有高灵敏度和选择性,是一种很有前途的荧光材料。HAO等[19]通过合成花球状CDs@Eu-DPA MOFs,开发了一种检测Cu2+的荧光探针,CDs发射的荧光可以降低激发源不稳定性等系统误差,从而提高荧光探针的精度。XU等[20]设计了一种CD@Eu3+-MOF-253复合材料用于检测Hg2+,并发现Hg2+通过与CDs的表面官能团协调,可以显著淬灭CDs的荧光,而不影响Eu-MOF的荧光强度。到目前为止,已有许多关于MOFs的荧光探针研究[19-21],然而,CDs@MOFs荧光材料用于重金属铅离子检测的研究鲜有报道。
本研究通过碳点(N,S,I-CDs)修饰MIL-101-NH2, 制备了CDs@MIL-101-NH2复合材料,通过TEM、XRD、FT-IR、XPS等对材料进行表征,研究碳点修饰对MOFs结构的影响以及材料浓度、pH值、时间对CDs@MOFs复合材料荧光强度的影响,在将复合材料作为荧光探针用于水中Pb2+的荧光检测过程中,考察其检测范围、检出限以及离子选择性等,探讨CDs@MIL-101-NH2复合材料发生荧光淬灭的可能机理,以期为荧光法检测重金属离子的MOF材料设计提供参考。
基于CDs@MIL-101-NH2复合材料的水体铅离子荧光检测方法及效果分析
Fluorescence detection of lead ions in water and its effect analysis based on CDs@MIL-101-NH2 composite
-
摘要: 为探究CDs@MIL-101-NH2对铅离子的荧光法检测性能及荧光淬灭机理,采用水热法制备了碳点(N, S, I-CDs)修饰MIL-101-NH2(Fe)的复合材料,使用TEM、XRD、FT-IR、XPS对复合材料进行了表征。结果表明:采用水热法成功构建了CDs@MIL-101-NH2复合材料,碳点的引入未对MIL-101-NH2结构造成很大影响,且氨基修饰于MOF框架上;CDs@MIL-101-NH2复合材料在激发波长为340 nm、发射波长为436 nm、材料的质量浓度为10 mg·L−1、pH为7的条件下具有最佳荧光强度;CDs@MIL-101-NH2荧光探针可对水体铅离子做出荧光响应,有较好的选择性,在1.22~500 µmol·L−1内具有良好的拟合度(R2=0.998 8),检出限为1.22 µmol·L−1;荧光探针与铅离子结合后发生荧光淬灭现象,可能是由于复合材料上的氨基与铅离子发生相互作用引起的,且荧光碳点修饰提高了MIL-101-NH2检测水体铅离子的性能;在实际水样的铅离子检测中,样品回收率为97.24%~106.16%,相对标准偏差RSD<4%,说明这一新型的CDs@MIL-101-NH2复合材料可用于荧光法检测水体中的铅离子。本研究结果可为灵敏高效的荧光探针的设计与制备提供一种新思路,亦可为便捷的原位检测铅离子荧光方法的进一步开发和应用提供参考。
-
关键词:
- CDs@MIL-101-NH2复合材料 /
- 荧光探针 /
- 水体铅离子 /
- 荧光淬灭
Abstract: To investigate the performance of fluorometric detection for lead ions by CDs@MIL-101-NH2(Fe) and fluorescence quenching mechanism, carbon dots (N, S, I-CDs)-modified MIL-101-NH2(Fe) composite was prepared by hydrothermal method and was characterized by TEM, XRD, FT-IR and XPS. The results show that: CDs@MIL-101-NH2 composite was successfully prepared by hydrothermal method , and the introduction of carbon dots did not have a large effect on the MIL-101-NH2 structure, and the amino group modified the MOF framework; CDs@MIL-101-NH2 composite presented the highest fluorescence intensity at an excitation wavelength of 340 nm, an emission wavelength of 436 nm, dosage of 10 mg·L−1, and pH 7; CDs@MIL-101-NH2 fluorescent probe could fluorescently respond to lead ions in water with good selectivity and good fitting (R2=0.9988) within 1.22~500 µmol·L−1, the detection limit was 1.22 µmol·L−1. The fluorescence quenching occurred when the fluorescent probe combined with lead ions through the interaction between the amino group on the composite and lead ions, and the fluorescent carbon dot modification improved the performance of MIL-101-NH2 on detecting lead ions in water. During the detection of lead ions in the actual water samples, the sample recovery rates ranged from 97.24% to 106.16% with the relative standard deviations of RSD<4%, indicating that this novel CDs@MIL-101-NH2 composite can be used to test lead ions in water through fluorometric method. The results of this study can provide a new idea for the design and preparation of sensitive and efficient fluorescent probes, and also provide a reference for the further development and application of convenient in situ fluorescence methods for lead ions detection. -
表 1 各种MOFs材料对Pb2+的荧光检测性能
Table 1. Parameters of lead ion fluorescence detection performance of various modified MOFs
表 2 自来水和思源湖湖水水样中Pb2+加标回收率和相对标准偏差结果
Table 2. Pb2+ spiked recovery rates and relative standard deviations in water samples from tap water and Siyuan Lake
样品 加标溶液/(µmol·L−1) 检测值/(µmol·L−1) 加标回收率/% 相对标准偏差/% 自来水-1 25 26.54 106.16 3.51 自来水-2 50 49.37 98.74 1.87 自来水-3 100 105.3 105.3 2.33 思源湖湖水-1 25 24.31 97.24 1.74 思源湖湖水-2 50 50.69 101.38 0.97 思源湖湖水-3 100 103.63 103.63 2.16 -
[1] NAG R, CUMMINS E. Human health risk assessment of lead (Pb) through the environmental-food pathway[J]. Science of the Total Environment, 2021, 15: 1168-1182. [2] LOU J, JIN L, WU N, et al. DNA damage and oxidative stress in human B lymphoblastoid cells after combined exposure to hexavalent chromium and nickel compounds[J]. Food and Chemical Toxicology, 2013, 55: 535-540. [3] LI X, ZHANG B, LI N, et al. Zebrafish neurobehavioral phenomics applied as the behavioral warning methods for fingerprinting endocrine disrupting effect by lead exposure at environmentally relevant level[J]. Chemosphere, 2019, 231: 315-325. doi: 10.1016/j.chemosphere.2019.05.146 [4] CLEMENS S, MA J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67: 489-512. doi: 10.1146/annurev-arplant-043015-112301 [5] 中华人民共和国国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB 3838-2002[S]. 北京: 中国环境科学出版社, 2003. [6] 蔡良圣, 林君, 辛青, 等. 电化学传感器监测水中痕量铜离子[J]. 中国环境科学, 2020, 40(8): 3394-3400. doi: 10.3969/j.issn.1000-6923.2020.08.017 [7] YAN S R, FOROUGHI M M, SAFAEI M, et al. A review: Recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies[J]. International Journal of Biological Macromolecules, 2020, 155: 184-207. doi: 10.1016/j.ijbiomac.2020.03.173 [8] SARFO D K, IZAKE E L, OʹMULLANE A P, et al. Molecular recognition and detection of Pb(II) ions in water by aminobenzo-18-crown-6 immobilised onto a nanostructured SERS substrate[J]. Sensors and Actuators B:Chemical, 2018, 255: 1945-1952. doi: 10.1016/j.snb.2017.08.223 [9] OZDEMIR M. A novel chromogenic molecular sensing platform for highly sensitive and selective detection of Cu2+ ions in aqueous environment[J]. Journal of Photochemistry & Photobiology A:Chemistry, 2019, 369: 54-69. [10] NAIK L, MARIDEVARMATH C V, THIPPESWAMY M S, et al. A highly selective and sensitive thiophene substituted 1, 3, 4-oxadiazole based turn-off fluorescence chemosensor for Fe2+ and turn on fluorescence chemosensor for Ni2+ and Cu2+ detection[J]. Materials Chemistry and Physics, 2021, 260: 63-75. [11] HE Y B, ZHOU W, QIAN G D, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43: 5657-5679. doi: 10.1039/C4CS00032C [12] RAZAVI S A A, MASOOMI M Y, ISLAMOGLU T, et al. Improvement of methane-framework interaction by controlling pore size and functionality of pillared MOFs[J]. Inorganic Chemistry, 2017, 56: 2581-2588. doi: 10.1021/acs.inorgchem.6b02758 [13] RAZAVI S A A, MASOOMI A. Function-structure relationship in metal-organic frameworks for mild, green, and fast catalytic C-C bond formation[J]. Inorganic Chemistry, 2019, 58: 14429-14439. doi: 10.1021/acs.inorgchem.9b01819 [14] MOROZAN A, JAOUEN F. Metal organic frameworks for electrochemical applications[J]. Energy & Environmental Science, 2012, 5: 9269-9290. [15] RAZAVI S A A, MORSALI A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap[J]. Coordination Chemistry Reviews, 2020, 415: 213299-213342. doi: 10.1016/j.ccr.2020.213299 [16] 李孜旋. 荧光功能NH2-MIL-53(Al)纳米片及其复合材料用于水中离子检测研究[D]. 合肥: 中国科学技术大学, 2021. [17] LIU Y, MA L N, SHI W J, et al. Four alkaline earth metal (Mg, Ca, Sr, Ba)-based MOFs as multiresponsive fluorescent sensors for Fe3+, Pb2+ and Cu2+ ions in aqueous solution[J]. Journal of Solid State Chemistry, 2019, 227: 636-647. [18] LI L, CHEN Q, NIU Z G, et al. Lanthanide metal-organic frameworks assembled from a fluorene-based ligand: selective sensing of Pb2+ and Fe3+ ions[J]. Journal of Materials Chemistry C, 2016, 4: 1900-1905. doi: 10.1039/C5TC04320D [19] HAO J, LIU F, LIU N, et al. Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal-organic frameworks[J]. Sensor and Actuators B:Chemical, 2017, 245: 641-647. doi: 10.1016/j.snb.2017.02.029 [20] XU X, YAN B. Fabrication and application of a ratiometric and colorimetric fluorescent probe for Hg2+ based on dual-emissive metaleorganic framework hybrids with carbon dots and Eu3+[J]. Journal of Materials Chemistry C, 2016, 4: 1543-1549. doi: 10.1039/C5TC04002G [21] WANG H, YAN B. N-GQDs and Eu3+ co-encapsulated anionic MOFs: Two-dimensional luminescent platform for decoding benzene homologues[J]. Dalton Transactions, 2017, 46(21): 7098-7105. doi: 10.1039/C7DT01352C [22] YAO C, XU Y, XIA Z. A carbon dot-encapsulated UiO-type metal organic framework as a multifunctional fluorescent sensor for temperature, metal ion and pH detection[J]. Journal of Materials Chemistry C, 2018, 6(16): 4396-4399. doi: 10.1039/C8TC01018H [23] BANERJEE D, HU Z C, LI J. Luminescent metal-organic frameworks as explosive sensors[J]. Dalton Transactions, 2014, 43: 10668-10685. doi: 10.1039/C4DT01196A [24] LV S W, LIU J M, LI C Y, et al. A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions[J]. Chemical Engineering Journal, 2019, 375: 122111-122121. doi: 10.1016/j.cej.2019.122111 [25] DUAN M, GUAN Z, MA Y J, et al. A novel catalyst of MIL-101(Fe) doped with Co and Cu as persulfate activator: Synthesis, characterization, and catalytic performance[J]. Chemical Papers, 2018, 72: 235-250. doi: 10.1007/s11696-017-0276-7 [26] FAZAELI R, ALIYAN H, MOGHADAM, et al. Nano-rod catalysts: Building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around vanadium oxide ships[J]. Journal of Molecular Catalysis A:Chemical, 2013, 374-375: 46-52. doi: 10.1016/j.molcata.2013.03.020 [27] MU Z, HUA J H, YANG Y L. N, S, I co-doped carbon dots for folic acid and temperature sensing and applied to cellular imaging[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 224: 117444-117453. doi: 10.1016/j.saa.2019.117444 [28] HASAN Z, KHAN N A, JHUNG S H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks[J]. Chemical Engineering Journal, 2016, 284: 1406-1413. doi: 10.1016/j.cej.2015.08.087 [29] WU L, ZHANG X F, LI Z Q, et al. A new sensor based on amino-functionalized zirconium metal-organic framework for detection of Cu2+ in aqueous solution[J]. Inorganic Chemistry Communications, 2016, 74: 22-25. doi: 10.1016/j.inoche.2016.10.031 [30] 王雨霏. 碳点@ZIF-8复合材料的制备与性能研究[D]. 长春: 吉林大学, 2021. [31] 胥静. 镧系金属有机框架材料的合成及其在荧光传感中的应用[D]. 南充: 西华师范大学, 2020. [32] LI B Z, SUO T Y, XIE S Y, et al. Rational design, synthesis, and applications of carbon dots@metal-organic frameworks (CD@MOF) based sensors[J]. Trends in Analytical Chemistry, 2021, 135: 116163. doi: 10.1016/j.trac.2020.116163