[1] |
AO J, ZHANG H, XU X, et al. A novel ion-imprinted amidoxime-functionalized UHMWPE fiber based on radiation-induced crosslinking for selective adsorption of uranium[J]. RSC Advances, 2019, 49(9): 28588-28597.
|
[2] |
AHMED W, MEHMOOD S, NUNES-DELGADO A, et al. Utilization of citrullus lanatus L. seeds to synthesize a novel MnFe2O4-biochar adsorbent for the removal of U(VI) from wastewater: Insights and comparison between modified and raw biochar[J]. Science of the Total Environment, 2021, 771: 144955. doi: 10.1016/j.scitotenv.2021.144955
|
[3] |
ZHANG B, GUO X, XIE S, et al. Synergistic nanofibrous adsorbent for uranium extraction from seawater[J]. RSC Advances, 2016, 85(6): 81995-82005.
|
[4] |
昝金晶, 董一慧, 张卫民. 铀在地下水系统中的赋存与迁移[J]. 有色金属(矿山部分), 2019, 71(6): 69-73.
|
[5] |
汪向伟, 梁漫春, 李钢, 等. 水中铀的分离富集方法综述[J]. 清华大学学报(自然科学版), 2021, 61(1): 64-69.
|
[6] |
LI N, YANG L, JI X, et al. Bioinspired succinyl-β-cyclodextrin membranes for enhanced uranium extraction and reclamation[J]. Environmental Science:Nano, 2020, 7(10): 3124-3135. doi: 10.1039/D0EN00709A
|
[7] |
LI W, LIU Q, LIU J, et al. Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine[J]. Applied Surface Science, 2017, 403: 378-388. doi: 10.1016/j.apsusc.2017.01.104
|
[8] |
HU R, SHAO D, WANG X. Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions[J]. Polymer Chemistry, 2014, 21(5): 6207-6215.
|
[9] |
ZHU J, LIU Q, LIU J, et al. Ni-Mn LDH-decorated 3D Fe-inserted and N-doped carbon framework composites for efficient uranium(VI) removal[J]. Environmental Science:Nano, 2018, 5(2): 467-475. doi: 10.1039/C7EN01018D
|
[10] |
ZHAO H, LIU X, YU M, et al. A study on the degree of amidoximation of polyacrylonitrile fibers and its effect on their capacity to adsorb uranyl ions[J]. Industrial & Engineering Chemistry Research, 2015, 54(12): 3101-3106.
|
[11] |
WANG D, SONG J, LIN S, et al. A marine‐inspired hybrid sponge for highly efficient uranium extraction from seawater[J]. Advanced Functional Materials, 2019, 29(32): 1901009. doi: 10.1002/adfm.201901009
|
[12] |
LUO W, XIAO G, TIAN F, et al. Engineering robust metal-phenolic network membranes for uranium extraction from seawater[J]. Energy & Environmental Science, 2019, 12(2): 607-614.
|
[13] |
余志强, 杨仁伟, 汪帅马. 饮用水铀污染处理方法简述[J]. 江西化工, 2016(3): 8-14. doi: 10.3969/j.issn.1008-3103.2016.03.003
|
[14] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 铀矿冶辐射防护和辐射环境保护规定: GB 23727-2020[S]. 北京: 中国标准出版社, 2020.
|
[15] |
MA F, GUI Y, LIU P, et al. Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation[J]. Chemical Engineering Journal, 2020, 390: 124597. doi: 10.1016/j.cej.2020.124597
|
[16] |
NOVAES C G, BEZERRA M A, DA SILVERE G P, et al. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP- OES)[J]. Microchemical Journal, 2016, 128: 331-346. doi: 10.1016/j.microc.2016.05.015
|
[17] |
POINTURIER F, HUBERT A, BAGLAN N, et al. Evaluation of a new generation quadrupole-based ICP-MS for uranium isotopic measurements in environmental samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 276(2): 505-511. doi: 10.1007/s10967-008-0534-9
|
[18] |
杜浪, 李玉香, 马雪, 等. 偶氮胂Ⅲ分光光度法测定微量铀[J]. 冶金分析, 2015, 35(1): 68-71. doi: 10.13228/j.boyuan.issn1000-7571.009388
|
[19] |
付军. 长距离α污染测量仪的研制[D]. 成都: 成都理工大学, 2008.
|
[20] |
PEI H J, HUI G, JIAN W B, et al. Construction of gel-like swollen-layer on polyacrylonitrile surface and its swelling behavior and uranium adsorption properties[J]. Journal of Colloid and Interface Science, 2020, 576: 109-118. doi: 10.1016/j.jcis.2020.04.080
|
[21] |
QIAN Y, QUAN Y, WANG H, et al. Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites[J]. Journal of Materials Chemistry A, 2018, 48(6): 24676-24685.
|
[22] |
ZHAO Y, LI J, ZHANG S, et al. Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(VI)[J]. RSC Advances, 2014, 62(4): 32710.
|
[23] |
YUAN Y, ZHAO S, WEN J, et al. Rational design of porous nanofiber adsorbent by blow spinning with ultrahigh uranium recovery capacity from seawater[J]. Advanced Functional Materials, 2019, 29(2): 1805380. doi: 10.1002/adfm.201805380
|
[24] |
WANG D, SONG J, WEN J, et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Advanced Energy Materials, 2018, 8: 1802607. doi: 10.1002/aenm.201802607
|
[25] |
QIAN Y, YUAN Y, WANG H. Highly efficient uranium adsorption by salicyl aldoxime/polydopamine graphene oxide nanocomposites[J]. Journal of Materials Chemistry A, 2018, 6: 24676-24685. doi: 10.1039/C8TA09486A
|
[26] |
ZHU M X, LIU L J, FENG J. Efficient uranium adsorption by amidoximized porouspolyacrylonitrile with hierarchical pore structure prepared by freeze-extraction[J] Molecular Liquids, 2021, 328: 115304.
|