-
能源消耗的与日剧增和化石燃料的日渐匮乏及其引发的环境问题,促使新型清洁能源发展迅猛[1]。核能具有清洁稳定、经济高效等特点,在新型能源中发挥着越来越重要的作用[2]。铀资源是核工业持续发展的基础原料,然而在铀矿的开采、核燃料的加工使用等过程中会产生大量放射性的含铀废水,如果得不到妥善处理将会对环境造成污染[2]。此外,突发的核泄漏也会产生大量高辐射的含铀废水,对环境和生态造成难以修复的灾难[3]。因此,亟需建立快速高效的铀富集及检测方法来对铀污染进行预防和治理。
铀在自然界中主要以U(Ⅳ)和U(Ⅵ) 2种价态存在[4]。U(Ⅳ)主要存在于还原条件下,当溶液为氧化条件时,正四价的铀会被氧化成正六价。此外,U(Ⅳ)容易与溶液中溶解的无机碳发生络合反应,形成沉淀[5-6]。通常情况下,水中铀的主要价态为正六价,常见的含铀废水处理方法包括化学沉淀、离子交换、膜分离和吸附等[7]。吸附法因为操作方法简单,成本可控,是目前公认的最好的铀富集手段之一[8]。吸附材料可以借助多孔结构和较大的比表面积增大吸附效果[9],通过对其表面官能团进行修饰,对铀酰离子进行选择性富集。ZHAO等[10]设计了一种具有纳米孔道的互联开孔结构的聚偕胺肟纤维,该吸附剂在天然水体中对铀的吸附量高达17.6 mg·g−1,可至少重复使用30次,大大降低了生产成本,极具实际应用价值。WANG等[11]受海洋海绵独特的生理结构特性的启发,通过简单的浸渍-干燥-交联的过程,将聚酰亚胺二肟/藻酸盐互穿网络水凝胶层均匀包裹在三聚氰胺海绵基材的骨架上,聚酰亚胺二肟/藻酸盐复合海绵5 t海水中吸附56 d后铀吸附量达到5.8 mg·g−1。LUO等[12]报道了一种可从海水中高效、低成本的提取铀的微孔膜。这种微孔膜处理来自我国东海的 10 L天然海水后可获取27.81 μg铀,而它的生产成本大约为275 $·kg−1。
水体中的铀质量浓度的检测也是保障核安全的重要环节[13],根据《铀矿冶辐射防护和环境保护规定》[14],可排放的含铀废水中铀的质量浓度不能超过50 µg·L−1。世界卫生组织要求饮用水中铀的最高质量浓度不得高于14.4 µg·L−1[15]。目前,较为主流的检测方法有电感耦合等离子体(ICP)联用技术,包括电感耦合等离子体发射光谱法(ICP-OES)[16]、电感耦合等离子体质谱法(ICP-MS)[17]、火焰原子吸收光谱法(FAAS)、拉曼光谱法和分光光度法[18],此外还包括根据颜色差值进行检测的比色法。以上方法虽然在检测时可以达到较高的精确度,但是需要额外添加显色剂,对操作精确度的要求高,且均需要在实验室条件下进行分析,这使得铀的检测过程繁琐,增加了人力及时间成本。为了高效、快速地进行铀的检测,必须寻找到一种快速、高效的现场原位检测技术。
铀是一种天然放射性元素,可以放射出α射线,因而可以将铀富集后利用α表面污染探测仪,快速便捷地检测出其表面α粒子数,实现对铀质量浓度的检测。但是α射线射程极短、穿透力很弱,在几何形状不规则的污染表面不易被探测器检测,影响检测效果。因此,使用α表面污染探测仪需要重点考虑如何将水体中的铀富集到形状规则的表面[19]。在众多吸附材料中,平板膜型吸附剂因其表面平整,比粉末状、纤维状、凝胶状等吸附材料更容易满足α表面探测仪的探测条件。此外,平板膜型吸附剂不仅具有吸附能力,也结合了膜过滤技术具有的高效、操作性强、节省时间和空间等优势,在重金属过滤去除领域有很好的应用前景[7,20]。
本研究利用高性能的琥珀酰-β-环糊精膜对水体中的铀进行富集,使用可调节转速的齿轮泵和膜组件对污染水体进行连续、自动化地过滤吸附,通过调节操作压力和时间来优化铀的富集条件,使用α辐射探测仪对富集到膜表面的α粒子进行计数,计算得到不同质量浓度含铀废水的检测结果并绘制水体铀质量浓度与膜表面α粒子的关系曲线,确定水体中U(Ⅵ)的质量浓度且验证检测方法的精确度,旨在为α粒子检测仪检测水体中铀质量浓度的实际应用提供参考。
基于琥珀酰-β-环糊精膜的铀酰离子富集与α粒子检测效果分析
Effect analysis of α particle detection and uranyl ion enrichment based on succinyl-β-cyclodextrin membrane
-
摘要: 为实现原位、高效检测水体中铀质量浓度的目的,采用层层负载的方法,制备了具有高效吸附铀的琥珀酰-β-环糊精膜;通过齿轮泵将进料液运输到膜表面,结合吸附和膜过滤技术将水体中的铀富集到膜表面,借助铀具有放射α粒子的特性,使用α粒子检测仪对膜表面的α粒子进行计算,从而推定水体中铀的质量浓度;通过改变操作压力、操作时间、进料温度,探究α粒子在膜表面的富集趋势,确定最佳操作条件。结果表明:当转速控制在300~560 r·min−1时,操作压力与转速呈线性关系,拟合度为0.997,吸附量随着操作压力和时间的增加而增加;进料液温度对膜结构和吸附反应有双重影响,膜表面的α粒子数量随着温度的变化呈波动状态,当温度为25 ℃时,膜表面α粒子数量为6.41个;在25 ℃下,调节压力为8×104 Pa,对不同质量浓度的铀溶液进行过滤,溶质分别选择去离子水和海水,利用α检测技术对膜表面的铀进行计算,拟合溶液中铀质量浓度和膜表面α粒子数目,得到拟合度为0.985和0.982的线性曲线;通过膜表面α粒子数目确定未知溶液中铀的质量浓度,并确定检测方法的精确度,得到相对标准偏差为1.11%。与传统检测技术相比,该技术简化了操作流程,提高了检测效率,实现了原位检测水体中铀的目的。Abstract: In order to achieve the purpose of in-situ and efficient detection of uranium content in water, a type of succinyl-β-cyclodextrin membrane was prepared by a layered loading method. The feed liquid was transported to the membrane surface by a gear pump, the adsorption and membrane filtration technologies was combined to enrich uranium in water to the membrane surface. The α particles released by uranium on the surface of membrane could be captured by α particle detector, so as to estimate the content of uranium in water. The enrichment trend of α particles on the membrane surface was investigated by changing the operating pressure, operating time and feed temperature, then the best operating conditions were determined. The results show that the operating pressure had a linear relationship with the rotating speed from 300 to 560 r·min−1 , and the fitting degree was 0.997, the adsorption amount increased with the increase of operating pressure and time. The feed liquid temperature had a dual effect on the membrane structure and adsorption reaction, the number of α particles on the membrane surface fluctuated with the change of temperature, which was 6.41 at 25 ℃. At 25 °C and the pressure of 8×104 Pa, uranium solutions with different mass concentrations were filtered with RO water and seawater as solutes, the uranium on the membrane surface was calculated by α detector, the uranium mass concentration in the solution and the number of particles on the membrane surface were fitted, and the linear curves with a fitting degree of 0.985 and 0.982 were obtained, respectively. The mass concentration of uranium in the unknown solution could be determined by the number of α particles on the membrane surface. The accuracy of the method was determined with RSD of 1.11%. Compared with the traditional detection technology, it simplifies the operation process, improves the detection efficiency, and realizes the purpose of in-situ detection of uranium in water.
-
Key words:
- uranyl ion /
- succinyl-β-cyclodextrin /
- adsorption /
- filtrate /
- detection of α particle
-
表 1 伪一级模型和伪二级模型的吸附动力学参数
Table 1. Adsorption kinetic parameters of pseudo first-order model and pseudo second-order model
方程 qe,cal /(mg·g−1) R2 K/min−1 伪一级动力学方程 100.29 0.972 9.39×10-3 伪二级动力学方程 126.58 0.982 6.84×10-5 表 2 CDM-U的 EDS能谱结果
Table 2. Results on EDS of CDM-U
元素 质量分数/% 原子占比/% C 67.79 72.71 N 22.88 21.04 O 7.65 6.16 U 1.68 0.09 -
[1] AO J, ZHANG H, XU X, et al. A novel ion-imprinted amidoxime-functionalized UHMWPE fiber based on radiation-induced crosslinking for selective adsorption of uranium[J]. RSC Advances, 2019, 49(9): 28588-28597. [2] AHMED W, MEHMOOD S, NUNES-DELGADO A, et al. Utilization of citrullus lanatus L. seeds to synthesize a novel MnFe2O4-biochar adsorbent for the removal of U(VI) from wastewater: Insights and comparison between modified and raw biochar[J]. Science of the Total Environment, 2021, 771: 144955. doi: 10.1016/j.scitotenv.2021.144955 [3] ZHANG B, GUO X, XIE S, et al. Synergistic nanofibrous adsorbent for uranium extraction from seawater[J]. RSC Advances, 2016, 85(6): 81995-82005. [4] 昝金晶, 董一慧, 张卫民. 铀在地下水系统中的赋存与迁移[J]. 有色金属(矿山部分), 2019, 71(6): 69-73. [5] 汪向伟, 梁漫春, 李钢, 等. 水中铀的分离富集方法综述[J]. 清华大学学报(自然科学版), 2021, 61(1): 64-69. [6] LI N, YANG L, JI X, et al. Bioinspired succinyl-β-cyclodextrin membranes for enhanced uranium extraction and reclamation[J]. Environmental Science:Nano, 2020, 7(10): 3124-3135. doi: 10.1039/D0EN00709A [7] LI W, LIU Q, LIU J, et al. Removal U(VI) from artificial seawater using facilely and covalently grafted polyacrylonitrile fibers with lysine[J]. Applied Surface Science, 2017, 403: 378-388. doi: 10.1016/j.apsusc.2017.01.104 [8] HU R, SHAO D, WANG X. Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions[J]. Polymer Chemistry, 2014, 21(5): 6207-6215. [9] ZHU J, LIU Q, LIU J, et al. Ni-Mn LDH-decorated 3D Fe-inserted and N-doped carbon framework composites for efficient uranium(VI) removal[J]. Environmental Science:Nano, 2018, 5(2): 467-475. doi: 10.1039/C7EN01018D [10] ZHAO H, LIU X, YU M, et al. A study on the degree of amidoximation of polyacrylonitrile fibers and its effect on their capacity to adsorb uranyl ions[J]. Industrial & Engineering Chemistry Research, 2015, 54(12): 3101-3106. [11] WANG D, SONG J, LIN S, et al. A marine‐inspired hybrid sponge for highly efficient uranium extraction from seawater[J]. Advanced Functional Materials, 2019, 29(32): 1901009. doi: 10.1002/adfm.201901009 [12] LUO W, XIAO G, TIAN F, et al. Engineering robust metal-phenolic network membranes for uranium extraction from seawater[J]. Energy & Environmental Science, 2019, 12(2): 607-614. [13] 余志强, 杨仁伟, 汪帅马. 饮用水铀污染处理方法简述[J]. 江西化工, 2016(3): 8-14. doi: 10.3969/j.issn.1008-3103.2016.03.003 [14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 铀矿冶辐射防护和辐射环境保护规定: GB 23727-2020[S]. 北京: 中国标准出版社, 2020. [15] MA F, GUI Y, LIU P, et al. Functional fibrous materials-based adsorbents for uranium adsorption and environmental remediation[J]. Chemical Engineering Journal, 2020, 390: 124597. doi: 10.1016/j.cej.2020.124597 [16] NOVAES C G, BEZERRA M A, DA SILVERE G P, et al. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP- OES)[J]. Microchemical Journal, 2016, 128: 331-346. doi: 10.1016/j.microc.2016.05.015 [17] POINTURIER F, HUBERT A, BAGLAN N, et al. Evaluation of a new generation quadrupole-based ICP-MS for uranium isotopic measurements in environmental samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 276(2): 505-511. doi: 10.1007/s10967-008-0534-9 [18] 杜浪, 李玉香, 马雪, 等. 偶氮胂Ⅲ分光光度法测定微量铀[J]. 冶金分析, 2015, 35(1): 68-71. doi: 10.13228/j.boyuan.issn1000-7571.009388 [19] 付军. 长距离α污染测量仪的研制[D]. 成都: 成都理工大学, 2008. [20] PEI H J, HUI G, JIAN W B, et al. Construction of gel-like swollen-layer on polyacrylonitrile surface and its swelling behavior and uranium adsorption properties[J]. Journal of Colloid and Interface Science, 2020, 576: 109-118. doi: 10.1016/j.jcis.2020.04.080 [21] QIAN Y, QUAN Y, WANG H, et al. Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites[J]. Journal of Materials Chemistry A, 2018, 48(6): 24676-24685. [22] ZHAO Y, LI J, ZHANG S, et al. Amidoxime-functionalized magnetic mesoporous silica for selective sorption of U(VI)[J]. RSC Advances, 2014, 62(4): 32710. [23] YUAN Y, ZHAO S, WEN J, et al. Rational design of porous nanofiber adsorbent by blow spinning with ultrahigh uranium recovery capacity from seawater[J]. Advanced Functional Materials, 2019, 29(2): 1805380. doi: 10.1002/adfm.201805380 [24] WANG D, SONG J, WEN J, et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Advanced Energy Materials, 2018, 8: 1802607. doi: 10.1002/aenm.201802607 [25] QIAN Y, YUAN Y, WANG H. Highly efficient uranium adsorption by salicyl aldoxime/polydopamine graphene oxide nanocomposites[J]. Journal of Materials Chemistry A, 2018, 6: 24676-24685. doi: 10.1039/C8TA09486A [26] ZHU M X, LIU L J, FENG J. Efficient uranium adsorption by amidoximized porouspolyacrylonitrile with hierarchical pore structure prepared by freeze-extraction[J] Molecular Liquids, 2021, 328: 115304.