[1] 蒲思川, 冯启明. 我国水体污染的现状及防治对策[J]. 中国资源综合利用, 2008, 26(5): 31 − 34. doi: 10.3969/j.issn.1008-9500.2008.05.014
[2] 陈华林, 陈英旭. 污染底泥修复技术进展[J]. 农业环境保护, 2002, 21(2): 179 − 182.
[3] SOWERS K R, MAY H D. In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet?[J]. Current Opinion in Biotechnology, 2013, 24(3): 482 − 488. doi: 10.1016/j.copbio.2012.10.004
[4] FERRARESE E, ANDREOTTOLA G, OPREA I A. Remediation of PAH-contaminated sediments by chemical oxidation[J]. Journal of Hazardous Materials, 2008, 152(1): 128 − 139. doi: 10.1016/j.jhazmat.2007.06.080
[5] 许炼烽, 邓绍龙, 陈继鑫, 等. 河流底泥污染及其控制与修复[J]. 生态环境学报, 2014, 23(10): 1708 − 1715. doi: 10.3969/j.issn.1674-5906.2014.10.021
[6] SONG T, YAN Z, ZHAO Z, et al. Construction and operation of freshwater sediment microbial fuel cell for electricity generation[J]. Bioprocess and Biosystems Engineering, 2011, 34(5): 621 − 627. doi: 10.1007/s00449-010-0511-x
[7] REIMERS C E, TENDER L M, FERTIG S, et al. Harvesting energy from the marine sediment− water interface[J]. Environmental Science & Technology, 2001, 35(1): 192 − 195.
[8] LI H, HE W, QU Y, et al. Pilot-scale benthic microbial electrochemical system (BMES) for the bioremediation of polluted river sediment[J]. Journal of Power Sources, 2017, 356: 430 − 437. doi: 10.1016/j.jpowsour.2017.03.066
[9] HAN L, LIU R, LI M, et al. Construction of a self-powered system for simultaneous in situ remediation of Nitrate and Cr(VI) contaminated synthetic groundwater and river sediment[J]. Sustainability, 2018, 10(8): 2806. doi: 10.3390/su10082806
[10] WANG Z, LIU Y, LI K, et al. The influence and mechanism of different acid treatment to activated carbon used as air-breathing cathode catalyst of microbial fuel cell[J]. Electrochimica Acta, 2017, 246: 830 − 840. doi: 10.1016/j.electacta.2017.05.086
[11] WANG A, CHENG H, REN N, et al. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery[J]. Frontiers of Environmental Science & Engineering, 2012, 6(4): 569 − 574.
[12] WANG X, GAO N, ZHOU Q, et al. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells[J]. Bioresource Technology, 2013, 144: 632 − 636. doi: 10.1016/j.biortech.2013.07.022
[13] LIU Z, DESANTIS T Z, ANDERSEN G L, et al. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers[J]. Nucleic Acids Research, 2008, 36(18): e120. doi: 10.1093/nar/gkn491
[14] WANG Y, QIAN P Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies[J]. PLoS One, 2009, 4(10): e7401. doi: 10.1371/journal.pone.0007401
[15] BAKER G C, SMITH J J, COWAN D A. Review and re-analysis of domain-specific 16S primers[J]. Journal of Microbiological Methods, 2003, 55(3): 541 − 555. doi: 10.1016/j.mimet.2003.08.009
[16] PEIRAVI M, MOTE S R, MOHANTY M K, et al. Bioelectrochemical treatment of acid mine drainage (AMD) from an abandoned coal mine under aerobic condition[J]. Journal of Hazardous Materials, 2017, 333: 329 − 338. doi: 10.1016/j.jhazmat.2017.03.045
[17] KIM C, LEE C R, SONG Y E, et al. Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater[J]. Chemical Engineering Journal, 2017, 328: 703 − 707. doi: 10.1016/j.cej.2017.07.077
[18] KATURI K P, SCOTT K, HEAD I M, et al. Microbial fuel cells meet with external resistance[J]. Bioresource Technology, 2011, 102(3): 2758 − 2766. doi: 10.1016/j.biortech.2010.10.147
[19] JADHAV G S, GHANGREKAR M M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration[J]. Bioresource Technology, 2009, 100(2): 717 − 723. doi: 10.1016/j.biortech.2008.07.041
[20] SAJANA T K, GHANGREKAR M M, MITRA A. Effect of operating parameters on the performance of sediment microbial fuel cell treating aquaculture water[J]. Aquacultural Engineering, 2014, 61: 17 − 26. doi: 10.1016/j.aquaeng.2014.05.004
[21] HOLMES D E, BOND D R, O NEIL R A, et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments[J]. Microbial Ecology, 2004, 48(2): 178 − 190. doi: 10.1007/s00248-003-0004-4
[22] EWING T, HA P T, BABAUTA J T, et al. Scale-up of sediment microbial fuel cells[J]. Journal of Power Sources, 2014, 272: 311 − 319. doi: 10.1016/j.jpowsour.2014.08.070
[23] 安众一. 微生物电化学系统利用重金属离子产电特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[24] HABIBUL N, HU Y, WANG Y, et al. Bioelectrochemical Chromium(VI) removal in plant-microbial fuel cells[J]. Environmental Science & Technology, 2016, 50(7): 3882 − 3889.