[1] LUO Y L, GUO W S, NGO H H, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment [J]. Science of the Total Environment, 2014, 473/474: 619-641. doi: 10.1016/j.scitotenv.2013.12.065
[2] LIAO Z P, NGUYEN M N, WAN G J, et al. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants [J]. Journal of Hazardous Materials, 2020, 397: 122779. doi: 10.1016/j.jhazmat.2020.122779
[3] LI R B, MANOLI K, KIM J, et al. Peracetic acid–ruthenium(Ⅲ) oxidation process for the degradation of micropollutants in water [J]. Environmental Science & Technology, 2021, 55(13): 9150-9160.
[4] CHENG X X, LI P J, LIU W C, et al. Activation of peroxymonosulfate by metal oxide nanoparticles for mitigating organic membrane fouling in surface water treatment [J]. Separation and Purification Technology, 2020, 246: 116935. doi: 10.1016/j.seppur.2020.116935
[5] CHEN S S, LI M Q, ZHANG M, et al. Metal organic framework derived one-dimensional porous Fe/N-doped carbon nanofibers with enhanced catalytic performance [J]. Journal of Hazardous Materials, 2021, 416: 126101. doi: 10.1016/j.jhazmat.2021.126101
[6] LIU Y, XU X M, SHAO Z P, et al. Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application [J]. Energy Storage Materials, 2020, 26: 1-22. doi: 10.1016/j.ensm.2019.12.019
[7] LUO H Z, ZENG Z T, ZENG G M, et al. Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting [J]. Chemical Engineering Journal, 2020, 383: 123196. doi: 10.1016/j.cej.2019.123196
[8] ANAE J, AHMAD N, KUMAR V, et al. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives [J]. Science of the Total Environment, 2021, 767: 144351. doi: 10.1016/j.scitotenv.2020.144351
[9] 陈潇, 卢聪, 凌思源, 等. 生物炭负载零价纳米铁去除土壤中十溴二苯乙烷 [J]. 环境科学学报, 2020, 40(12): 4524-4530. doi: 10.13671/j.hjkxxb.2020.0188 CHEN X, LU C, LING S Y, et al. Removal of decabromodiphenyl ethane (DBDPE) by biochar doped with zero-valent-nano iron in a soil system [J]. Acta Scientiae Circumstantiae, 2020, 40(12): 4524-4530(in Chinese). doi: 10.13671/j.hjkxxb.2020.0188
[10] 张婷婷, 刘永军, 周成涛, 等. 竹制生物炭负载TiO2-SnO2电化学处理焦化废水 [J]. 化工学报, 2020, 71(12): 5793-5801. ZHANG T T, LIU Y J, ZHOU C T, et al. TiO2-SnO2 coated bamboo biochar for electrochemical treatment of coking wastewater [J]. CIESC Journal, 2020, 71(12): 5793-5801(in Chinese).
[11] WU R B, QIAN X K, RUI X H, et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability [J]. Small, 2014, 10(10): 1932-1938. doi: 10.1002/smll.201303520
[12] LIN K Y A, CHANG H A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water [J]. Chemosphere, 2015, 139: 624-631. doi: 10.1016/j.chemosphere.2015.01.041
[13] SHAO J, WAN Z M, LIU H M, et al. Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage [J]. J Mater Chem A, 2014, 2(31): 12194-12200. doi: 10.1039/C4TA01966K
[14] LIN Y, WU S H, YANG C P, et al. Preparation of size-controlled silver phosphate catalysts and their enhanced photocatalysis performance via synergetic effect with MWCNTs and PANI [J]. Applied Catalysis B:Environmental, 2019, 245: 71-86. doi: 10.1016/j.apcatb.2018.12.048
[15] LUO R, LIU C, LI J S, et al. Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate [J]. Journal of Hazardous Materials, 2017, 329: 92-101. doi: 10.1016/j.jhazmat.2017.01.032
[16] ZHANG M, XIAO C M, YAN X, et al. Efficient removal of organic pollutants by metal-organic framework derived Co/C yolk-shell nanoreactors: Size-exclusion and confinement effect [J]. Environmental Science & Technology, 2020, 54(16): 10289-10300.
[17] HOU W X, HUANG Y, LIU X. Highly efficient and recyclable ZIF-67 catalyst for the degradation of tetracycline [J]. Catalysis Letters, 2020, 150(10): 3017-3022. doi: 10.1007/s10562-020-03210-2
[18] 张格红, 赵平歌, 廖志鹏, 等. 超声强化铋掺杂氧化铟降解偶氮染料废水 [J]. 环境化学, 2016, 35(3): 526-532. doi: 10.7524/j.issn.0254-6108.2016.03.2015080701 ZHANG G H, ZHAO P G, LIAO Z P, et al. Ultrasonic enhanced degradation of AZO dye wastewater by bismuth doped indium oxide [J]. Environmental Chemistry, 2016, 35(3): 526-532(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.03.2015080701
[19] ZHANG M, XIAO C M, ZHANG C, et al. Large-scale synthesis of Biomass@MOF-derived porous carbon/cobalt nanofiber for environmental remediation by advanced oxidation processes [J]. ACS ES& T Engineering, 2021, 1(2): 249-260.
[20] GUO C Y, CHEN C F, LU J Y, et al. Stable and recyclable Fe3C@CN catalyst supported on carbon felt for efficient activation of peroxymonosulfate [J]. Journal of Colloid and Interface Science, 2021, 599: 219-226. doi: 10.1016/j.jcis.2021.04.092
[21] CUI X W, ZHANG S S, GENG Y, et al. Synergistic catalysis by Fe3O4-biochar/peroxymonosulfate system for the removal of bisphenol A [J]. Separation and Purification Technology, 2021, 276: 119351. doi: 10.1016/j.seppur.2021.119351
[22] ZHU M S, KONG L S, XIE M, et al. Carbon aerogel from forestry biomass as a peroxymonosulfate activator for organic contaminants degradation [J]. Journal of Hazardous Materials, 2021, 413: 125438. doi: 10.1016/j.jhazmat.2021.125438
[23] WANG H Y, WANG C H, QI J W, et al. Spiderweb-like Fe-co Prussian blue analogue nanofibers as efficient catalyst for bisphenol-A degradation by activating peroxymonosulfate [J]. Nanomaterials, 2019, 9(3): 402. doi: 10.3390/nano9030402
[24] YE Q Y, WU J Y, WU P X, et al. Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: Performance and mechanism [J]. Water Research, 2020, 185: 116246. doi: 10.1016/j.watres.2020.116246
[25] LI X N, WANG Z H, ZHANG B, et al. FexCo3−xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate [J]. Applied Catalysis B:Environmental, 2016, 181: 788-799. doi: 10.1016/j.apcatb.2015.08.050
[26] LIU J G, JIANG S J, CHEN D D, et al. Activation of persulfate with biochar for degradation of bisphenol A in soil [J]. Chemical Engineering Journal, 2020, 381: 122637. doi: 10.1016/j.cej.2019.122637
[27] ZHENG Z X, NG Y H, TANG Y M, et al. Visible-light-driven photoelectrocatalytic activation of chloride by nanoporous MoS2@BiVO4 photoanode for enhanced degradation of bisphenol A [J]. Chemosphere, 2021, 263: 128279. doi: 10.1016/j.chemosphere.2020.128279
[28] 李亚萍, 孙祥林, 陈晓, 等. 过硫酸盐增强ZnO@N, C-Co3O4光电催化降解四溴双酚A的性能研究 [J]. 华南师范大学学报(自然科学版), 2021, 53(3): 43-53. LI Y P, SUN X L, CHEN X, et al. The photoelectrocatalytic degradation of tetrabromobisphenol A with persulfate-enhanced ZnO@N, C-Co3O4 [J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(3): 43-53(in Chinese).