[1] 李国亮. 氮氧化物对环境的危害及污染控制技术 [J]. 山西化工, 2019, 39(5): 123-124,135. doi: 10.16525/j.cnki.cn14-1109/tq.2019.05.44 LI G L. Hazards of nitrogen oxides to the environment and pollution control technology [J]. Shanxi Chemical Industry, 2019, 39(5): 123-124,135(in Chinese). doi: 10.16525/j.cnki.cn14-1109/tq.2019.05.44
[2] WALTERS W W, THARP B D, FANG H, et al. Nitrogen isotope composition of thermally produced NOx from various fossil-fuel combustion sources [J]. Environmental Science & Technology, 2015, 49(19): 11363-11371.
[3] CHU B W, MA Q X, LIU J, et al. Air pollutant correlations in China: Secondary air pollutant responses to NOx and SO2 control [J]. Environmental Science & Technology Letters, 2020, 7(10): 695-700.
[4] 王军霞, 李曼, 敬红, 等. 我国氮氧化物排放治理状况分析及建议 [J]. 环境保护, 2020, 48(18): 24-27. doi: 10.14026/j.cnki.0253-9705.2020.18.004 WANG J X, LI M, JING H, et al. Analysis and suggestions on nitrogen oxide emission control in China [J]. Environmental Protection, 2020, 48(18): 24-27(in Chinese). doi: 10.14026/j.cnki.0253-9705.2020.18.004
[5] XIONG S C, WENG J X, LIAO Y, et al. Alkali metal deactivation on the low temperature selective catalytic reduction of NOx with NH3 over MnOx-CeO2: A mechanism study [J]. The Journal of Physical Chemistry C, 2016, 120(28): 15299-15309. doi: 10.1021/acs.jpcc.6b05175
[6] ZHU N, SHAN W P, SHAN Y L, et al. Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NOx with NH3 [J]. Chemical Engineering Journal, 2020, 388: 124250. doi: 10.1016/j.cej.2020.124250
[7] 周学荣, 张晓鹏. SCR催化剂碱(土)金属中毒的研究进展 [J]. 化学通报, 2015, 78(7): 590-596. doi: 10.14159/j.cnki.0441-3776.2015.07.002 ZHOU X R, ZHANG X P. Research progress in alkali metal poisoning of selective catalytic reduction catalysts [J]. Chemistry, 2015, 78(7): 590-596(in Chinese). doi: 10.14159/j.cnki.0441-3776.2015.07.002
[8] ZHOU G Y, MAITARAD P, WANG P L, et al. Alkali-resistant NOx reduction over SCR catalysts via boosting NH3 adsorption rates by in situ constructing the sacrificed sites [J]. Environmental Science & Technology, 2020, 54(20): 13314-13321.
[9] SZYMASZEK A, SAMOJEDEN B, MOTAK M. The deactivation of industrial SCR catalysts—A short review [J]. Energies, 2020, 13(15): 3870. doi: 10.3390/en13153870
[10] 袁玲, 邱兆富, 杨骥, 等. SCR催化剂碱(土)金属中毒及其改性再生研究进展 [J]. 环境工程, 2018, 36(4): 117-121. doi: 10.13205/j.hjgc.201804024 YUAN L, QIU Z F, YANG J, et al. Research progress of alkali (alkaline earth) metal poisoning and modified regeneration of scr catalyst [J]. Environmental Engineering, 2018, 36(4): 117-121(in Chinese). doi: 10.13205/j.hjgc.201804024
[11] SU Z H, REN S, CHEN Z C, et al. Deactivation effect of CaO on Mn-Ce/AC catalyst for SCR of NO with NH3 at low temperature [J]. Catalysts, 2020, 10(8): 873. doi: 10.3390/catal10080873
[12] ZHOU J, GUO R T, ZHANG X F, et al. Cerium oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review [J]. Energy & Fuels, 2021, 35(4): 2981-2998.
[13] YAN L J, JI Y Y, WANG P L, et al. Alkali and phosphorus resistant zeolite-like catalysts for NOx reduction by NH3 [J]. Environmental Science & Technology, 2020, 54(14): 9132-9141.
[14] CAO J, YAO X J, CHEN L, et al. Effects of different introduction methods of Ce4+ and Zr4+ on denitration performance and anti-K poisoning performance of V2O5-WO3/TiO2 catalyst [J]. Journal of Rare Earths, 2020, 38(11): 1207-1214. doi: 10.1016/j.jre.2019.11.005
[15] CAO J, YAO X J, YANG F M, et al. Improving the denitration performance and K-poisoning resistance of the V2O5-WO3/TiO2 catalyst by Ce4+ and Zr4+ co-doping [J]. Chinese Journal of Catalysis, 2019, 40(1): 95-104. doi: 10.1016/S1872-2067(18)63184-5
[16] WANG P L, YAN L J, GU Y D, et al. Poisoning-resistant NOx reduction in the presence of alkaline and heavy metals over H-SAPO-34-supported Ce-promoted Cu-based catalysts [J]. Environmental Science & Technology, 2020, 54(10): 6396-6405.
[17] PENG Y, LI J H, SI W Z, et al. Ceria promotion on the potassium resistance of MnOx/TiO2 SCR catalysts: An experimental and DFT study [J]. Chemical Engineering Journal, 2015, 269: 44-50. doi: 10.1016/j.cej.2015.01.052
[18] HU G, YANG J, TIAN Y M, et al. Effect of Ce doping on the resistance of Na over V2O5-WO3/TiO2 SCR catalysts [J]. Materials Research Bulletin, 2018, 104: 112-118. doi: 10.1016/j.materresbull.2018.04.009
[19] LI H R, MIAO J F, SU Q F, et al. Improvement in alkali metal resistance of commercial V2O5-WO3/TiO2 SCR catalysts modified by Ce and Cu [J]. Journal of Materials Science, 2019, 54(24): 14707-14719. doi: 10.1007/s10853-019-03919-5
[20] YAN Z D, SHI X Y, YU Y B, et al. Alkali resistance promotion of Ce-doped vanadium-titanic-based NH3-SCR catalysts [J]. Journal of Environmental Sciences, 2018, 73: 155-161. doi: 10.1016/j.jes.2018.01.024
[21] CHEN Y R, WANG M X, DU X S, et al. High resistance to Na poisoning of the V2O5-Ce(SO4)2/TiO2 catalyst for the NO SCR reaction [J]. Aerosol and Air Quality Research, 2018, 18(12): 2948-2955. doi: 10.4209/aaqr.2017.11.0521
[22] HU W S, ZHANG Y H, LIU S J, et al. Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B:Environmental, 2017, 206: 449-460. doi: 10.1016/j.apcatb.2017.01.036
[23] NIE H, LI W, WU Q R, et al. The poisoning of V2O5-WO3/TiO2 and V2O5-Ce(SO4)2/TiO2 SCR catalysts by KCl and the partial regeneration by SO2 [J]. Catalysts, 2020, 10(2): 207. doi: 10.3390/catal10020207
[24] WANG H Q, GAO S, YU F X, et al. Effective way to control the performance of a ceria-based DeNOx catalyst with improved alkali resistance: Acid–base adjusting [J]. The Journal of Physical Chemistry C, 2015, 119(27): 15077-15084. doi: 10.1021/acs.jpcc.5b00793
[25] LI X, LI X S, LI J H, et al. High calcium resistance of CeO2-WO3 SCR catalysts: Structure investigation and deactivation analysis [J]. Chemical Engineering Journal, 2017, 317: 70-79. doi: 10.1016/j.cej.2017.02.027
[26] XU D, WU W H, WANG P L, et al. Boosting the alkali/heavy metal poisoning resistance for NO removal by using iron-titanium pillared montmorillonite catalysts [J]. Journal of Hazardous Materials, 2020, 399: 122947. doi: 10.1016/j.jhazmat.2020.122947
[27] YAN L J, GU Y D, HAN L P, et al. Dual promotional effects of TiO2-decorated acid-treated MnOx octahedral molecular sieve catalysts for alkali-resistant reduction of NOx [J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11507-11517.
[28] WANG P L, GAO S, WANG H Q, et al. Enhanced dual resistance to alkali metal and phosphate poisoning: Mo modifying vanadium-titanate nanotubes SCR catalyst [J]. Applied Catalysis A:General, 2018, 561: 68-77. doi: 10.1016/j.apcata.2018.05.023
[29] ZHANG J, HUANG Z W, DU Y Y, et al. Alkali-poisoning-resistant Fe2O3/MoO3/TiO2 catalyst for the selective reduction of NO by NH3: The role of the MoO3 safety buffer in protecting surface active sites [J]. Environmental Science & Technology, 2020, 54(1): 595-603.
[30] WU P, SHEN K, LIU Y L, et al. Enhanced activity and alkali metal resistance in vanadium SCR catalyst via co-modification with Mo and Sb [J]. Catalysis Science & Technology, 2021, 11(12): 4115-4132.
[31] XUE H Y, MENG T, LIU F F, et al. Enhanced resistance to calcium poisoning on Zr-modified Cu/ZSM-5 catalysts for the selective catalytic reduction of NO with NH3 [J]. RSC Advances, 2019, 9(66): 38477-38485. doi: 10.1039/C9RA07722G
[32] LIU S W, GUO R T, SUN X, et al. Selective catalytic reduction of NOx over Ce/TiZrOx catalyst: The promoted K resistance by TiZrOx support [J]. Molecular Catalysis, 2019, 462: 19-27. doi: 10.1016/j.mcat.2018.10.015
[33] XU B Q, XU H D, LIN T, et al. Promotional effects of Zr on K+-poisoning resistance of CeTiOx catalyst for selective catalytic reductionof NOx with NH3 [J]. Chinese Journal of Catalysis, 2016, 37(8): 1354-1361. doi: 10.1016/S1872-2067(15)61102-0
[34] KANG K K, YAO X J, HUANG Y K, et al. Insights into the co-doping effect of Fe3+ and Zr4+ on the anti-K performance of CeTiOx catalyst for NH3-SCR reaction [J]. Journal of Hazardous Materials, 2021, 416: 125821. doi: 10.1016/j.jhazmat.2021.125821
[35] WANG P L, CHEN S, GAO S, et al. Niobium oxide confined by ceria nanotubes as a novel SCR catalyst with excellent resistance to potassium, phosphorus, and lead [J]. Applied Catalysis B:Environmental, 2018, 231: 299-309. doi: 10.1016/j.apcatb.2018.03.024
[36] 黄力, 王虎, 纵宇浩, 等. Nb改性V-Mo/Ti脱硝催化剂的抗Na中毒性能研究 [J]. 稀有金属与硬质合金, 2020, 48(5): 34-37,83. HUANG L, WANG H, ZONG Y H, et al. Study on the anti-Na poisoning performance of Nb modified V-Mo/Ti denitration catalyst [J]. Rare Metals and Cemented Carbides, 2020, 48(5): 34-37,83(in Chinese).
[37] WANG X X, CONG Q L, CHEN L, et al. The alkali resistance of CuNbTi catalyst for selective reduction of NO by NH3: A comparative investigation with VWTi catalyst [J]. Applied Catalysis B:Environmental, 2019, 246: 166-179. doi: 10.1016/j.apcatb.2019.01.049
[38] JIANG Y, GAO W Q, BAO C Z, et al. Comparative study of Ce-Nb-Ti oxide catalysts prepared by different methods for selective catalytic reduction of NO with NH3 [J]. Molecular Catalysis, 2020, 496: 111161. doi: 10.1016/j.mcat.2020.111161
[39] MA Z R, WENG D, WU X D, et al. A novel Nb-Ce/WOx-TiO2 catalyst with high NH3-SCR activity and stability [J]. Catalysis Communications, 2012, 27: 97-100. doi: 10.1016/j.catcom.2012.07.006
[40] KHAN M N, HAN L P, WANG P L, et al. Tailored alkali resistance of DeNOx catalysts by improving redox properties and activating adsorbed reactive species [J]. iScience, 2020, 23(6): 101173. doi: 10.1016/j.isci.2020.101173
[41] DU X S, WANG X M, CHEN Y R, et al. Supported metal sulfates on Ce-TiOx as catalysts for NH3-SCR of NO: High resistances to SO2 and potassium [J]. Journal of Industrial and Engineering Chemistry, 2016, 36: 271-278. doi: 10.1016/j.jiec.2016.02.013
[42] SONG L, YUE H R, MA K, et al. FeSTi superacid catalyst for NH3-SCR with superior resistance to metal poisons in flue gas [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(45): 16878-16888.
[43] ZHOU Z Z, LAN J M, LIU L Y, et al. Enhanced alkali resistance of sulfated CeO2 catalyst for the reduction of NOx from biomass fired flue gas [J]. Catalysis Communications, 2021, 149: 106230. doi: 10.1016/j.catcom.2020.106230
[44] YAO X J, KANG K K, CAO J, et al. Enhancing the denitration performance and anti-K poisoning ability of CeO2-TiO2/P25 catalyst by H2SO4 pretreatment: Structure-activity relationship and mechanism study [J]. Applied Catalysis B:Environmental, 2020, 269: 118808. doi: 10.1016/j.apcatb.2020.118808
[45] GAO S, WANG P L, CHEN X B, et al. Enhanced alkali resistance of CeO2/SO42––ZrO2 catalyst in selective catalytic reduction of NOx by ammonia [J]. Catalysis Communications, 2014, 43: 223-226. doi: 10.1016/j.catcom.2013.10.017
[46] DU Y Y, HUANG Z W, ZHANG J, et al. Fe2O3/HY catalyst: A microporous material with zeolite-type framework achieving highly improved alkali poisoning-resistant performance for selective reduction of NOx with NH3 [J]. Environmental Science & Technology, 2020, 54(12): 7078-7087.
[47] ZHA K W, KANG L, FENG C, et al. Improved NOx reduction in the presence of alkali metals by using hollandite Mn–Ti oxide promoted Cu-SAPO-34 catalysts [J]. Environmental Science:Nano, 2018, 5(6): 1408-1419. doi: 10.1039/C8EN00226F
[48] ZHA K W, FENG C, HAN L P, et al. Promotional effects of Fe on manganese oxide octahedral molecular sieves for alkali-resistant catalytic reduction of NOx: XAFS and in situ DRIFTs study [J]. Chemical Engineering Journal, 2020, 381: 122764. doi: 10.1016/j.cej.2019.122764
[49] HU P P, HUANG Z W, GU X, et al. Alkali-resistant mechanism of a hollandite DeNOx catalyst [J]. Environmental Science & Technology, 2015, 49(11): 7042-7047.
[50] LIU X N, GAO J Y, CHEN Y X, et al. Rational design of alkali-resistant NO reduction catalysts using a stable hexagonal V-doped MoO3 support for alkali trapping [J]. ChemCatChem, 2018, 10(18): 3999-4003. doi: 10.1002/cctc.201800818
[51] HUANG Z W, LI H, GAO J Y, et al. Alkali- and sulfur-resistant tungsten-based catalysts for NOx emissions control [J]. Environmental Science & Technology, 2015, 49(24): 14460-14465.
[52] ZHENG L, ZHOU M J, HUANG Z W, et al. Self-protection mechanism of hexagonal WO3-based DeNOx catalysts against alkali poisoning [J]. Environmental Science & Technology, 2016, 50(21): 11951-11956.
[53] HUANG Z W, GU X, WEN W, et al. A “smart” hollandite DeNO(x) catalyst: Self-protection against alkali poisoning [J]. Angewandte Chemie (International Ed. in English), 2013, 52(2): 660-664. doi: 10.1002/anie.201205808
[54] LIU J X, LIU J, ZHAO Z, et al. Fe/Beta@Meso-CeO2 nanostructure core-shell catalyst: Remarkable enhancement of potassium poisoning resistance [J]. Catalysis Surveys from Asia, 2018, 22(4): 181-194. doi: 10.1007/s10563-018-9251-8
[55] HUANG C Y, GUO R T, PAN W G, et al. SCR of NOx by NH3 over MnFeOx@TiO2 catalyst with a core-shell structure: The improved K resistance [J]. Journal of the Energy Institute, 2019, 92(5): 1364-1378. doi: 10.1016/j.joei.2018.09.005
[56] CHEN X B, WANG H Q, WU Z B, et al. Novel H2Ti12O25-confined CeO2 catalyst with remarkable resistance to alkali poisoning based on the “shell protection effect” [J]. The Journal of Physical Chemistry C, 2011, 115(35): 17479-17484. doi: 10.1021/jp205069w
[57] WANG P L, WANG H Q, CHEN X B, et al. Novel SCR catalyst with superior alkaline resistance performance: Enhanced self-protection originated from modifying protonated titanate nanotubes [J]. Journal of Materials Chemistry A, 2015, 3(2): 680-690. doi: 10.1039/C4TA03519D
[58] SHI Y R, YI H H, GAO F Y, et al. Facile synthesis of hollow nanotube MnCoOx catalyst with superior resistance to SO2 and alkali metal poisons for NH3-SCR removal of NOx [J]. Separation and Purification Technology, 2021, 265: 118517. doi: 10.1016/j.seppur.2021.118517
[59] LI X S, LIU C D, LI X, et al. A neutral and coordination regeneration method of Ca-poisoned V2O5-WO3/TiO2 SCR catalyst [J]. Catalysis Communications, 2017, 100: 112-116. doi: 10.1016/j.catcom.2017.06.034
[60] WANG Y J, GE D J, CHEN M X, et al. A dual-functional way for regenerating NH3-SCR catalysts while enhancing their poisoning resistance [J]. Catalysis Communications, 2018, 117: 69-73. doi: 10.1016/j.catcom.2018.08.028
[61] PENG Y, LI J H, CHEN L, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: An experimental and theoretical study [J]. Environmental Science & Technology, 2012, 46(5): 2864-2869.
[62] CIMINO S, FERONE C, CIOFFI R, et al. A case study for the deactivation and regeneration of a V2O5-WO3/TiO2 catalyst in a tail-end SCR unit of a municipal waste incineration plant [J]. Catalysts, 2019, 9(5): 464. doi: 10.3390/catal9050464
[63] SHEN B X, YAO Y, CHEN J H, et al. Alkali metal deactivation of Mn-CeOx/Zr-delaminated-clay for the low-temperature selective catalytic reduction of NOx with NH3 [J]. Microporous and Mesoporous Materials, 2013, 180: 262-269. doi: 10.1016/j.micromeso.2013.07.004
[64] LIU S J, JI P D, YE D, et al. Regeneration of potassium poisoned catalysts for the selective catalytic reduction of NO with NH3 [J]. Aerosol and Air Quality Research, 2019, 19(3): 649-656. doi: 10.4209/aaqr.2018.07.0273
[65] LI J X, ZHANG P, CHEN L, et al. Regeneration of selective catalyst reduction catalysts deactivated by pb, as, and alkali metals [J]. ACS Omega, 2020, 5(23): 13886-13893. doi: 10.1021/acsomega.0c01283
[66] WANG X X, MA H Y, SHI Y, et al. Regeneration of alkali poisoned TiO2-based catalyst by various acids in NO selective catalytic reduction with NH3 [J]. Fuel, 2021, 285: 119069. doi: 10.1016/j.fuel.2020.119069
[67] LI X, LI X S, CHEN J J, et al. An efficient novel regeneration method for Ca-poisoning V2O5-WO3/TiO2 catalyst [J]. Catalysis Communications, 2016, 87: 45-48. doi: 10.1016/j.catcom.2016.06.017
[68] ZHENG Y, GUO Y Y, WANG J, et al. Ca doping effect on the competition of NH3-SCR and NH3 oxidation reactions over vanadium-based catalysts [J]. The Journal of Physical Chemistry C, 2021, 125(11): 6128-6136. doi: 10.1021/acs.jpcc.1c00677
[69] LYU Z K, NIU S L, HAN K H, et al. Theoretical insights into the poisoning effect of Na and K on α-Fe2O3 catalyst for selective catalytic reduction of NO with NH3 [J]. Applied Catalysis A:General, 2021, 610: 117968. doi: 10.1016/j.apcata.2020.117968
[70] CAI S X, XU T Y, WANG P L, et al. Self-protected CeO2–SnO2@SO42–/TiO2 catalysts with extraordinary resistance to alkali and heavy metals for NOx reduction [J]. Environmental Science & Technology, 2020, 54(19): 12752-12760.