[1] |
HAN H, SUN W, HU Y, et al. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy[J]. Journal of Hazardous Materials, 2014, 278: 49-54. doi: 10.1016/j.jhazmat.2014.05.091
|
[2] |
DAS G, ACHARYA S, ANAND S, et al. Jarosites: a review[J]. Mineral Processing and Extractive Metullargy Review, 1996, 16(3): 185-210. doi: 10.1080/08827509708914135
|
[3] |
周佳兴, 董燕, 刘奋武, 等. NaBH4对施氏矿物-黄铁矾生物化学合成的影响及矿物在催化降解甲基橙中的应用[J]. 环境工程学报, 2021, 15(4): 1242-1251. doi: 10.12030/j.cjee.202010103
|
[4] |
KAKSONEN A, MORRIS C, REA S, et al. Biohydrometallurgical iron oxidation and precipitation: Part II — Jarosite precipitate characterisation and acid recovery by conversion to hematite[J]. Hydrometallurgy, 2014, 147-148: 264-272. doi: 10.1016/j.hydromet.2014.04.015
|
[5] |
辛靖靖, 刘金艳, 伍赠玲, 等. 黄铜矿生物浸出过程中的钝化作用研究进展[J]. 金属矿山, 2018(9): 15-21. doi: 10.19614/j.cnki.jsks.201809003
|
[6] |
MARTINEZ M, SOLAN A, HIDALGO A, et al. Characterization and mobilization of toxic metals from electrolytic zinc waste[J]. Chemosphere, 2019, 233: 414-421.
|
[7] |
刘鹏飞, 张亦飞, 游韶玮, 等. 热酸浸出回收黄钾铁矾渣中有价元素[J]. 过程工程学报, 2016, 16(4): 584-589. doi: 10.12034/j.issn.1009-606X.216125
|
[8] |
薛佩毅, 巨少华, 张亦飞, 等. 焙烧-浸出黄钾铁矾渣中多种有价金属[J]. 过程工程学报, 2011, 11(1): 56-60.
|
[9] |
ASOKAN P, SAXENA M, ASOLEKAR S. Hazardous jarosite use in developing non-hazardous product for engineering application[J]. Journal of Hazardous Materials, 2006, 137(3): 1589-1599.
|
[10] |
魏甲明, 杨斌 李若贵. 西北铅锌厂152 m2流态化焙烧炉与改良黄钾铁矾法炼锌项目的创新[J]. 中国有色冶金, 2018, 47(2): 11-13. doi: 10.3969/j.issn.1672-6103.2018.02.003
|
[11] |
OUYANG B, LU X, LIU H, et al. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization[J]. Geochimica et Cosmochimica Acta, 2014, 124: 54-71. doi: 10.1016/j.gca.2013.09.020
|
[12] |
王文静, 高坤, 叶翰, 等. 希瓦氏菌还原作用下黄钾铁矾的相转变特征及其负载铬的迁移转化规律[J]. 环境科学学报, 2021, 41(4): 1323-1332.
|
[13] |
ZHOU C, ZHOU Y, RITTMANN B. Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization[J]. Water Research, 2017, 119: 91-101. doi: 10.1016/j.watres.2017.04.044
|
[14] |
CASTRO L, BLAZQUEZ M L, GONZALEZ F, et al. Anaerobic bioleaching of jarosites by Shewanella putrefaciens, influence of chelators and biofilm formation[J]. Hydrometallurgy, 2017, 168: 56-63. doi: 10.1016/j.hydromet.2016.08.002
|
[15] |
赵尚明, 何环, 于忠琦, 等. 嗜酸氧化亚铁硫杆菌脱煤矸石中硫影响因素的筛选及条件优化[J]. 环境工程学报, 2015, 9(9): 4585-4590. doi: 10.12030/j.cjee.20150979
|
[16] |
王莉莉, 孙秀云, 李桥, 等. 废弃印刷线路板中铜的两步浸出工艺优化[J]. 环境工程学报, 2018, 12(1): 250-258. doi: 10.12030/j.cjee.201705115
|
[17] |
YANG Y, CHEN S, YANG D, et al. Anaerobic reductive bio-dissolution of jarosites by Acidithiobacillus ferrooxidans using hydrogen as electron donor[J]. Science of The Total Environment, 2019, 686: 869-877. doi: 10.1016/j.scitotenv.2019.06.071
|
[18] |
YANG Y, CHEN S, WANG B, et al. Effect of ferric ions on the anaerobic bio-dissolution of jarosites by Acidithiobacillus ferrooxidans[J]. Science of The Total Environment, 2020, 710: 136334. doi: 10.1016/j.scitotenv.2019.136334
|
[19] |
杨远坤, 谌书, 陈梦君, 等. 氧化亚铁硫杆菌浸提废旧线路板铜的浸出率与时间的关系[J]. 环境工程学报, 2013, 7(6): 2322-2326.
|
[20] |
YANG Y, CHEN S, LI S, et al. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect[J]. Journal of Biotechnology, 2014, 173: 24-30. doi: 10.1016/j.jbiotec.2014.01.008
|
[21] |
ZHU N, XIANG Y, ZHANG T, et al. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria[J]. Journal of Hazardous Materials, 2011, 192(2): 614-619. doi: 10.1016/j.jhazmat.2011.05.062
|
[22] |
WANG H, DAI K, WANG Y, et al. Mixed culture fermentation of synthesis gas in the microfiltration and ultrafiltration hollow-fiber membrane biofilm reactors[J]. Bioresource Technology, 2018, 267: 650-656. doi: 10.1016/j.biortech.2018.07.098
|
[23] |
TANG Y, ZHOU C, Van GINKEL S, et al. Hydrogen permeability of the hollow fibers used in H-2-based membrane biofilm reactors[J]. Journal of Membrane Science, 2012, 407: 176-183.
|
[24] |
PRONK J T, de BRUYN J C, BOS P, et al. Anaerobic Growth of Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology, 1992, 58(7): 2227-2230. doi: 10.1128/aem.58.7.2227-2230.1992
|
[25] |
STOOKEY L L. Ferrozine--a new spectrophotometric reagent for iron[J]. Analytical Chemistry, 2002, 42(7): 779-781.
|
[26] |
YU R, ZHONG D, MIAO L, et al. Relationship and effect of redox potential, jarosites and extracellular polymeric substances in bioleaching chalcopyrite by Acidithiobacillus ferrooxidans[J]. Transactions of Nonferrous Metals Society Of China, 2011, 21(7): 1634-1640. doi: 10.1016/S1003-6326(11)60907-2
|
[27] |
AMEND J, SHOCK E. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria[J]. FEMS Microbiology Reviews, 2001, 25(2): 175-243. doi: 10.1111/j.1574-6976.2001.tb00576.x
|
[28] |
ZWIETERING M, JONGENBURGER I, ROMBOUTS F, et al. Modeling of the bacterial growth curve[J]. Applied and Environmental Microbiology, 1990, 56(6): 1875-1881. doi: 10.1128/aem.56.6.1875-1881.1990
|
[29] |
PHUKOETPHIM N, SALAKKAM A, LAOPAIBOON P, et al. Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models[J]. Journal of Biotechnology, 2017, 243: 69-75. doi: 10.1016/j.jbiotec.2016.12.012
|