[1] |
GREGORY K B, VIDIC R D, DZOMBAK D A. Water management challenges associated with the production of shale gas by hydraulic fracturing [J]. Elements, 2011, 7(3): 181-186. doi: 10.2113/gselements.7.3.181
|
[2] |
FERRAR K J, MICHANOWICZ D R, CHRISTEN C L, et al. Assessment of effluent contaminants from three facilities discharging Marcellus Shale wastewater to surface waters in Pennsylvania [J]. Environmental Science & Technology, 2013, 47(7): 3472-3481.
|
[3] |
NELL M, HELBLING D E. Exploring matrix effects and quantifying organic additives in hydraulic fracturing associated fluids using liquid chromatography electrospray ionization mass spectrometry [J]. Environmental Science. Processes & Impacts, 2019, 21(2): 195-205.
|
[4] |
SHAO L, HE P, XUE J, et al. Electrolytic degradation of biorefractory organics and ammonia in leachate from bioreactor landfill [J]. Water Science and Technology, 2006, 53(11): 143-150. doi: 10.2166/wst.2006.347
|
[5] |
WANG H, QUAN B X, AN X Q, et al. Advanced decomposition of coking wastewater in relation to total organic carbon using an electrochemical system [J]. Polish Journal of Environmental Studies, 2017, 26(2): 941-947. doi: 10.15244/pjoes/65358
|
[6] |
LI J, YANG Z H, XU H Y, et al. Electrochemical treatment of mature landfill leachate using Ti/RuO2–IrO2 and Al electrode: Optimization and mechanism [J]. RSC Advances, 2016, 6(53): 47509-47519. doi: 10.1039/C6RA05080H
|
[7] |
LI T G, LI X F, CHEN J, et al. Treatment of landfill leachate by electrochemical oxidation and anaerobic process [J]. Water Environment Research, 2007, 79(5): 514-520. doi: 10.2175/106143006X115435
|
[8] |
徐伟冬. 电芬顿氧化降解页岩气采出水中有机物过程研究[D]. 上海: 华东理工大学, 2020.
XU W D. Study on the process of electro-Fenton oxidation and degradation of organic matter in shale gas produced water[D]. Shanghai: East China University of Science and Technology, 2020(in Chinese).
|
[9] |
PENG X H, PAN X H, WANG X, et al. Accelerated removal of high concentration p-chloronitrobenzene using bioelectrocatalysis process and its microbial communities analysis [J]. Bioresource Technology, 2018, 249: 844-850. doi: 10.1016/j.biortech.2017.10.068
|
[10] |
CAO D, WANG Y B, ZHAO X. Combination of photocatalytic and electrochemical degradation of organic pollutants from water [J]. Current Opinion in Green and Sustainable Chemistry, 2017, 6: 78-84. doi: 10.1016/j.cogsc.2017.05.007
|
[11] |
LIU S Q, WANG Y, ZHOU X Z, et al. Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO2 as reactive electrochemical membrane [J]. Electrochimica Acta, 2017, 253: 357-367. doi: 10.1016/j.electacta.2017.09.055
|
[12] |
JAYATHILAKA P B, HAPUHINNA K U K, BANDARA A, et al. Phenol contaminated water treatment on several modified dimensionally stable anodes [J]. Water Environment Research, 2017, 89(8): 687-693. doi: 10.2175/106143017X14839994522623
|
[13] |
张永红, 金艳, 何化, 等. 页岩气采出水处理工艺试验研究 [J]. 天然气与石油, 2019, 37(3): 88-93. doi: 10.3969/j.issn.1006-5539.2019.03.017
ZHANG Y H, JIN Y, HE H, et al. Research on treatment process of shale gas wastewater [J]. Natural Gas and Oil, 2019, 37(3): 88-93(in Chinese). doi: 10.3969/j.issn.1006-5539.2019.03.017
|
[14] |
冯岐, 何芳, 刘德蓉, 等. 基于RuO2-PPy复合电极的制备及其电催化性能研究 [J]. 表面技术, 2018, 47(12): 105-112.
FENG Q, HE F, LIU D R, et al. Preparation and electrocatalysis performance of composite RuO2-PPy electrode [J]. Surface Technology, 2018, 47(12): 105-112(in Chinese).
|
[15] |
肖波. 电催化氧化复合磁分离处理页岩气压裂返排液室内研究 [J]. 石油与天然气化工, 2017, 46(4): 109-114.
XIAO B. Laboratory study on shale gas flowback water treatment applying electrochemical oxidation coupled with magnetic separation [J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 109-114(in Chinese).
|
[16] |
张太亮, 欧阳铖, 郭威, 等. 混凝—磁分离—电化学技术处理压裂返排液研究 [J]. 工业水处理, 2016, 36(4): 37-41. doi: 10.11894/1005-829x.2016.36(4).009
ZHANG T L, OUYANG C, GUO W, et al. Research on the treatment of fracturing flow-back fluid by coagulation-magnet separation-electrochemistry combined technology [J]. Industrial Water Treatment, 2016, 36(4): 37-41(in Chinese). doi: 10.11894/1005-829x.2016.36(4).009
|
[17] |
张胜健, 辛永磊, 许立坤, 等. NaCl浓度对金属氧化物阳极电化学性能与失效影响研究 [J]. 热加工工艺, 2015, 44(6): 60-63, 66. doi: 10.14158/j.cnki.1001-3814.2015.06.017
ZHANG S J, XIN Y L, XU L K, et al. Study on electrochemical performance and deactivation behavior of metal oxide anode affected by different NaCl concentration [J]. Hot Working Technology, 2015, 44(6): 60-63, 66(in Chinese). doi: 10.14158/j.cnki.1001-3814.2015.06.017
|
[18] |
TOMCSÁNYI L, de BATTISTI A, HIRSCHBERG G, et al. The study of the electrooxidation of chloride at RuO2/TiO2 electrode using CV and radiotracer techniques and evaluating by electrochemical kinetic simulation methods [J]. Electrochimica Acta, 1999, 44(14): 2463-2472. doi: 10.1016/S0013-4686(98)00381-8
|
[19] |
TAN I A W, AHMAD A L, HAMEED B H. Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology [J]. Chemical Engineering Journal, 2008, 137(3): 462-470. doi: 10.1016/j.cej.2007.04.031
|
[20] |
张泽志, 韩春亮, 李成未. 响应面法在试验设计与优化中的应用 [J]. 河南教育学院学报(自然科学版), 2011, 20(4): 34-37.
ZHANG Z Z, HAN C L, LI C W. Application of response surface method in experimental design and optimization [J]. Journal of Henan Institute of Education (Natural Science Edition), 2011, 20(4): 34-37(in Chinese).
|
[21] |
万一会. 基于网格絮凝-电化学技术的水处理装置的数值模拟与实验研究[D]. 重庆: 重庆大学, 2018.
WAN Y H. The study on simulation and experimental of water treatment equipment-based on flocculation-electrochemical technique[D]. Chongqing: Chongqing University, 2018(in Chinese).
|
[22] |
陈建孟, 潘伟伟, 刘臣亮. 电化学体系中羟基自由基产生机理与检测的研究进展 [J]. 浙江工业大学学报, 2008, 36(4): 416-422. doi: 10.3969/j.issn.1006-4303.2008.04.015
CHEN J M, PAN W W, LIU C L. Research progress on generation mechanism and determination of hydroxyl radical in electrochemical system [J]. Journal of Zhejiang University of Technology, 2008, 36(4): 416-422(in Chinese). doi: 10.3969/j.issn.1006-4303.2008.04.015
|
[23] |
杨德敏. 电化学催化氧化页岩气压裂返排废水的实验研究[J]. 环境工程, 2016, 34(增刊1): 159-161, 269.
YANG D M. Research of shale gas fracturing wastewater treatment by electro-catalytic oxidation[J]. Environmental Engineering, 2016, 34(Sup 1): 159-161, 269(in Chinese).
|
[24] |
宋迪慧, 安路阳, 张立涛, 等. 响应曲面法优化电化学耦合体系预处理焦化废水 [J]. 化工学报, 2018, 69(9): 4001-4011.
SONG D H, AN L Y, ZHANG L T, et al. Optimization of electrochemical coupling system process for coking waste water pretreatment by response surface method [J]. CIESC Journal, 2018, 69(9): 4001-4011(in Chinese).
|
[25] |
LESTER Y, FERRER I, THURMAN E M, et al. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment [J]. Science of the Total Environment, 2015, 512/513: 637-644. doi: 10.1016/j.scitotenv.2015.01.043
|
[26] |
STRONG L C, GOULD T, KASINKAS L, et al. Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering[J]. Journal of Environmental Engineering, 2014, 140(5): 2015, 140: B4013001
|
[27] |
OREM W, TATU C L, VARONKA M, et al. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale [J]. International Journal of Coal Geology, 2014, 126: 20-31. doi: 10.1016/j.coal.2014.01.003
|
[28] |
RANI M, SHIM W J, HAN G M, et al. Qualitative analysis of additives in plastic marine debris and its new products [J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 352-366. doi: 10.1007/s00244-015-0224-x
|
[29] |
MOLDOVAN Z, MARINCAS O, POVAR I, et al. Environmental exposure of anthropogenic micropollutants in the Prut River at the Romanian-Moldavian border: A snapshot in the lower Danube river basin [J]. Environmental Science and Pollution Research, 2018, 25(31): 31040-31050. doi: 10.1007/s11356-018-3025-8
|