-
近年来,页岩气开发作为我国重大能源战略发展迅速。然而,页岩气开采需要将大量压裂液(由水、支撑剂、杀菌剂和防腐剂等物质配置而成)高压注入页岩层[1-2],开采后约10% —80%的压裂液返回地表成为返排水。返排水中大量有机污染物给人类生存和生态环境健康带来重大挑战,引起了社会的广泛关注。目前常规的返排水处理技术主要包括物理法,化学法以及生物法,其中生物法由于工艺简单,运行稳定,成本低和环境友好等特点具有良好的应用前景。然而由于地层结构和压裂液成分不同,导致返排水中有机物种类及浓度差别较大。同时,研究表明,返排水中含有大量难降解有毒有机物,例如多环芳烃(PAHs)和季铵盐类化合物(QACs)[3]等,使得返排水的B/C值仅为0.1—0.3,可生化性极差,导致返排水直接生物处理难度较大。因此,在生物处理前提高废水的可生化性是一个重要的解决思路。
高级氧化是一种常用的降解难有机物处理方法,与光催化和超临界氧化等物化处理技术相比,电催化技术具有效率高、通用性强以及环境友好等优点。电催化氧化技术主要是通过阳极与阴极之间的电场作用生成羟基自由基、单线态氧等具有强氧化性的活性物质,氧化有机物使其矿化或转化成易降解的小分子有机物。已有研究表明电催化处理能有效降低工业废水中的COD,同时还能够提高废水可生化降解性[4-8],尤其在处理含有芳香化合物、酚类化合物、染料和氰化物等物质的废水时效果显著[9-12]。近年来,研究者尝试采用电催化技术与其他工艺联合的手段来处理返排水,并取得一定效果[13-16]。而在电催化过程中,选取高效稳定的电极材料非常重要,钌铱钛电极由于其具有较强的催化活性,较高的电极稳定性备受青睐。同时,返排水具有高氯特性,钌铱钛电极对于高氯环境具有较强适应性,研究发现随着Cl−升高,钛涂氧化物电极的阳极寿命增强,析氯阻力变小,电化学体系的电流效率增加[17]。依托返排水的高氯特性,Cl−主要作为电催化过程中的电解质参与反应,参考传统电化学界面反应机理[18],有如下反应过程:
其中,“S”代表钛电极表面的钌铱涂层。从式(1)和式(4),界面反应的第一步为水分子和氯离子吸附结合在钌铱电极表面活性位点上,水分子和氯离子产生竞争吸附,氯浓度增大利于反应正向进行,促进·OH等活性氧成分产生进而促进有机污染物的氧化过程。同时,Cl2析出(反应4反应5)进一步溶于水在电场中通过电子传递产生ClOx−等氯的高价态酸根离子(反应6),可能与污染物发生部分氧化还原反应。因此,电催化氧化技术有潜力发展成为返排水治理的预处理手段。然而,目前对于电催化技术预处理实际页岩气开采返排水的效果、影响因素及其优化以及有机污染物转化过程与产物等仍然缺乏深入了解。
本论文建立了电催化氧化预处理技术处理实际返排水,建立了响应曲面模型并基于模拟对电极板间距、电压和反应时间等工艺参数的影响进行了识别与优化,得到了电催化氧化技术处理返排水的优化工艺条件;进一步通过实验对模拟优化结果进行了验证,分析电催化氧化过程对返排水中有机物组分的转化过程;为认识电催化预处理对实际返排水的作用效果及其机制提供支撑,为返排水电催化预处理技术开发应用提供技术指导。
基于RSM模拟的返排水电催化工艺参数的影响特性及其优化实验
Effect of process parameters on electrocatalytic treatment of shale gas flowback water based on RSM simulation and its optimized experiment
-
摘要: 随着页岩气开发的大力推进,针对页岩气返排水处理技术成为当前的研究热点。为了去除页岩气返排水中复杂有机污染物,提升其可生化降解性,采用电催化氧化技术对页岩气返排水进行预处理。通过响应曲面分析研究了电压、电极板间距和反应时间3个参数对返排水中有机污染物转化过程的影响,并对3个电催化参数进行优化,得到最佳结果为板间距2.254 cm,电压8.667 V,反应时间80 min。基于优化结果开展的电催化实验结果表明,电催化氧化技术可有效去除不同区域返排水中22.2%—59.56% COD,同时显著提升返排水的可生化降解性,不同返排水样品BOD/COD值(B/C值)从0.04—0.26提高到0.39—0.64。此外,GC-MS分析结果表明,电催化氧化技术可以有效去除返排水中有毒且难生化降解的有机物(如芳香族化合物和酚类化合物),并生成易生化降解的脂肪族和酯类有机物。Abstract: With the vigorously promotion of shale gas industry, the shale gas flowback water treatment has become a research focus. To remove the complex organic pollutants and improve the biodegradability of flowback water, the electro-catalytic oxidation technology was used in this study for the pretreatment of the shale gas flowback water. Through response surface analysis, the influence of the three parameters (voltage, electrode plate spacing and reaction time) on the degradation process of organic pollutants in the flowback was studied and further optimized. The best result was the plate spacing: 2.254 cm, voltage: 8.667 V, response time: 80 min. Based on the optimization results, it showed that the electrocatalytic oxidation technology can effectively remove 22.2%—59.56% COD of different flowback water samples, and significantly improve the biodegradability. The BOD5/COD (B/C) value of different flowback water samples increased from 0.04—0.26 to 0.39—0.64. Additionally, GC-MS analysis indicated that electro-catalytic oxidation treatment could effectively remove plenty of non-biodegradable organic pollutants (such as aromatic compounds and phenolic compounds), with formation of abundant biodegradable organics such as aliphatic and esters.
-
图 3 板间距和反应时间对COD去除率影响的(a)响应曲面图和(b)等高线图,板间距和反应时间对B/C影响的(c)响应曲面图和(d)等高线图
Figure 3. (a) Response surface plot and (b) contour plot of the effect of plate distance and reactiontime on COD removal rate, (c) response surface plot and (d) contour plot of the effect of plate distance and reactiontime on B/C
表 1 返排水样品主要水质参数
Table 1. Water quality parameters of the flowback water sample
水质指标Water quality indexes FW-1 FW-2 FW-3 FW-4 pH 7.24 7.92 7.02 8.25 TSS/(mg·L−1) 14.257 193 146 257.5 TDS/(mg·L−1) 25648.3 20072 14206.67 19061.33 TOC/(mg·L−1) 205.74 430.88 63.747 140.76 COD/(mg·L−1) 758.3 1592 511.1 497 BOD5/(mg·L−1) 202 78 100 95 NH4+/(mg·L−1) 47.155 82.085 10.624 14 色度 25 20 20 — Cl−/(mg·L−1) 7047 9021 6272 11853 B/C 0.266 0.049 0.196 0.191 表 2 电催化氧化处理返排水响应曲面实验结果
Table 2. Response surface experimental results for the electro-catalytic treatment of flowback water
实验编号
No .X1 (电极板间距)/cm
Plate distanceX2 (电压)/V
VoltageX3 (反应时间)/min
Reaction timeY1(B/C) Y2(COD去除率)/% 1 2 6 40 0.65 24 2 4 6 40 0.39 21 3 2 12 40 0.68 33 4 4 12 40 0.30 22 5 2 6 80 0.35 27 6 4 6 80 0.32 23 7 2 12 80 0.65 55 8 4 12 80 0.42 33 9 1 9 60 0.92 38 10 5 9 60 0.41 22 11 3 3 60 0.74 16 12 3 15 60 0.76 52 13 3 9 20 0.36 17 14 3 9 100 0.55 36 15 3 9 60 0.29 30 16 3 9 60 0.32 30 表 3 各因素项显著性检验
Table 3. Significance test of various factors
响应值
Response value因素
Factor估计值
Predictive value标准差
Standard deviationF值
F-valueP值
P-valueB/C 常数项 0.268 0.064 A-板间距 −0.120 0.024 24.36 0.0026 B-电压 0.024 0.024 0.95 0.3664 C-反应时间 0.006 0.024 0.07 0.8057 AB −0.040 0.034 1.35 0.2889 AC 0.048 0.034 1.91 0.2164 BC 0.058 0.034 2.80 0.1455 A² 0.090 0.024 13.70 0.0101 B² 0.111 0.024 20.93 0.0038 C² 0.038 0.024 2.38 0.1739 COD 去除率 常数项 29.94 0.87 A-板间距 −4.50 0.87 26.65 0.0006 B-电压 7.50 0.87 74.01 0.0001 C-反应时间 4.75 0.87 29.69 0.0004 AB −3.25 1.23 6.95 0.0271 AC −1.50 1.23 1.48 0.2547 BC 3.50 1.23 8.06 0.0194 表 4 回归模型方差分析
Table 4. Analysis of variance of regression model
响应值
Response value差异源
Source statement自由度
df离差平方和
SS均方
MSF值
F-valueP值
P-valueB/C 回归 9 0.542 0.060 6.4 0.018 残差误差 6 0.057 0.009 失拟 5 0.056 0.011 25.1 0.151 纯误差 1 0.0005 0.0005 总计 15 0.598 R² /% 90 COD 去除率 回归 6 1785 297.6 24.5 0.0001 残差误差 9 109 12.2 失拟 8 109 13.7 纯误差 1 0 0 COD 去除率 总计 15 1894 R² /% 94 注:df表示自由度,SS表示离差平方和,MS 表示均方(MS=SS/df)。
Note: df denotes degrees of freedom, SS denotes sum of squares of deviations, and MS denotes mean square (MS=SS/df).表 5 原始返排水样品中检测到的有机物组分
Table 5. Organic component in the original flowback water sample
化学式
Chemical formula名称
Chemical name保留时间/min
Adjust retention timeC10H16 柠檬烯 4.71 C7H8O 对甲酚 5.36 C11H24 十二烷 5.67 C10H8 萘 6.97 C16H34 正十六烷 8.22 C14H30 4,6-二甲基十二烷 8.85 C9H9N 3-甲基吲哚 9.75 C14H30 正十四烷 9.82 S6 环六硫 11.23 C14H22O 2,4-二叔丁基苯酚 11.28 C20H42 正二十烷 11.58 C9H9NO 2,6-二甲基苯基异氰酸酯 11.89 C17H36 正十七烷 13.41 C14H10 菲 14.45 C21H44 正二十一烷 14.49 C17H24O3 7,9-二叔丁基-1-氧杂螺(4,5)癸-6,9-二烯-2,8-二酮 15.84 C16H32O2 棕榈酸 16.15 S8 环八硫 17.11 C54H110 五十四烷 17.81 C18H36O2 硬脂酸 18.03 C32H66 正三十二烷 19.22 C19H38O4 2-棕榈酰-外消旋-甘油 20.98 C21H42O4 单硬脂酸甘油酯 22.56 C30H50 全反-2,6,10,15,19,23-六甲基-2,6,10,14,18,22-廿四碳六烯 23.35 表 6 电催化处理后水样中检测到的有机物组分
Table 6. Organic components in the sample after electrocatalytic treatment
化学式
Chemical formula名称
Chemical name保留时间/min
Adjust retention timeC11H24 2,6-二甲基-壬烷 4.57 C13H28 2,7-二甲基十一烷 5.07 C12H26 3,7-二甲基癸烷 5.71 C9H10O 2,4-二甲基苯甲醛 7.41 C14H30 2,4-二甲基十二烷 8.00 C14H30 4,6-二甲基十二烷 8.22 C16H34 十六烷 8.85 C20H42 二十烷 11.04 C54H11O 五十四烷 15.78 C17H24O3 7,9-二叔丁基-1-氧杂螺(4,5)癸-6,9-二烯-2,8-二酮 15.84 C38H68O8 L-抗坏血酸基二棕榈酸酯 16.14 C19H38O4 2-棕榈酰-外消旋-甘油 20.98 C21H42O4 单硬脂酸甘油酯 22.55 -
[1] GREGORY K B, VIDIC R D, DZOMBAK D A. Water management challenges associated with the production of shale gas by hydraulic fracturing [J]. Elements, 2011, 7(3): 181-186. doi: 10.2113/gselements.7.3.181 [2] FERRAR K J, MICHANOWICZ D R, CHRISTEN C L, et al. Assessment of effluent contaminants from three facilities discharging Marcellus Shale wastewater to surface waters in Pennsylvania [J]. Environmental Science & Technology, 2013, 47(7): 3472-3481. [3] NELL M, HELBLING D E. Exploring matrix effects and quantifying organic additives in hydraulic fracturing associated fluids using liquid chromatography electrospray ionization mass spectrometry [J]. Environmental Science. Processes & Impacts, 2019, 21(2): 195-205. [4] SHAO L, HE P, XUE J, et al. Electrolytic degradation of biorefractory organics and ammonia in leachate from bioreactor landfill [J]. Water Science and Technology, 2006, 53(11): 143-150. doi: 10.2166/wst.2006.347 [5] WANG H, QUAN B X, AN X Q, et al. Advanced decomposition of coking wastewater in relation to total organic carbon using an electrochemical system [J]. Polish Journal of Environmental Studies, 2017, 26(2): 941-947. doi: 10.15244/pjoes/65358 [6] LI J, YANG Z H, XU H Y, et al. Electrochemical treatment of mature landfill leachate using Ti/RuO2–IrO2 and Al electrode: Optimization and mechanism [J]. RSC Advances, 2016, 6(53): 47509-47519. doi: 10.1039/C6RA05080H [7] LI T G, LI X F, CHEN J, et al. Treatment of landfill leachate by electrochemical oxidation and anaerobic process [J]. Water Environment Research, 2007, 79(5): 514-520. doi: 10.2175/106143006X115435 [8] 徐伟冬. 电芬顿氧化降解页岩气采出水中有机物过程研究[D]. 上海: 华东理工大学, 2020. XU W D. Study on the process of electro-Fenton oxidation and degradation of organic matter in shale gas produced water[D]. Shanghai: East China University of Science and Technology, 2020(in Chinese).
[9] PENG X H, PAN X H, WANG X, et al. Accelerated removal of high concentration p-chloronitrobenzene using bioelectrocatalysis process and its microbial communities analysis [J]. Bioresource Technology, 2018, 249: 844-850. doi: 10.1016/j.biortech.2017.10.068 [10] CAO D, WANG Y B, ZHAO X. Combination of photocatalytic and electrochemical degradation of organic pollutants from water [J]. Current Opinion in Green and Sustainable Chemistry, 2017, 6: 78-84. doi: 10.1016/j.cogsc.2017.05.007 [11] LIU S Q, WANG Y, ZHOU X Z, et al. Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO2 as reactive electrochemical membrane [J]. Electrochimica Acta, 2017, 253: 357-367. doi: 10.1016/j.electacta.2017.09.055 [12] JAYATHILAKA P B, HAPUHINNA K U K, BANDARA A, et al. Phenol contaminated water treatment on several modified dimensionally stable anodes [J]. Water Environment Research, 2017, 89(8): 687-693. doi: 10.2175/106143017X14839994522623 [13] 张永红, 金艳, 何化, 等. 页岩气采出水处理工艺试验研究 [J]. 天然气与石油, 2019, 37(3): 88-93. doi: 10.3969/j.issn.1006-5539.2019.03.017 ZHANG Y H, JIN Y, HE H, et al. Research on treatment process of shale gas wastewater [J]. Natural Gas and Oil, 2019, 37(3): 88-93(in Chinese). doi: 10.3969/j.issn.1006-5539.2019.03.017
[14] 冯岐, 何芳, 刘德蓉, 等. 基于RuO2-PPy复合电极的制备及其电催化性能研究 [J]. 表面技术, 2018, 47(12): 105-112. FENG Q, HE F, LIU D R, et al. Preparation and electrocatalysis performance of composite RuO2-PPy electrode [J]. Surface Technology, 2018, 47(12): 105-112(in Chinese).
[15] 肖波. 电催化氧化复合磁分离处理页岩气压裂返排液室内研究 [J]. 石油与天然气化工, 2017, 46(4): 109-114. XIAO B. Laboratory study on shale gas flowback water treatment applying electrochemical oxidation coupled with magnetic separation [J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 109-114(in Chinese).
[16] 张太亮, 欧阳铖, 郭威, 等. 混凝—磁分离—电化学技术处理压裂返排液研究 [J]. 工业水处理, 2016, 36(4): 37-41. doi: 10.11894/1005-829x.2016.36(4).009 ZHANG T L, OUYANG C, GUO W, et al. Research on the treatment of fracturing flow-back fluid by coagulation-magnet separation-electrochemistry combined technology [J]. Industrial Water Treatment, 2016, 36(4): 37-41(in Chinese). doi: 10.11894/1005-829x.2016.36(4).009
[17] 张胜健, 辛永磊, 许立坤, 等. NaCl浓度对金属氧化物阳极电化学性能与失效影响研究 [J]. 热加工工艺, 2015, 44(6): 60-63, 66. doi: 10.14158/j.cnki.1001-3814.2015.06.017 ZHANG S J, XIN Y L, XU L K, et al. Study on electrochemical performance and deactivation behavior of metal oxide anode affected by different NaCl concentration [J]. Hot Working Technology, 2015, 44(6): 60-63, 66(in Chinese). doi: 10.14158/j.cnki.1001-3814.2015.06.017
[18] TOMCSÁNYI L, de BATTISTI A, HIRSCHBERG G, et al. The study of the electrooxidation of chloride at RuO2/TiO2 electrode using CV and radiotracer techniques and evaluating by electrochemical kinetic simulation methods [J]. Electrochimica Acta, 1999, 44(14): 2463-2472. doi: 10.1016/S0013-4686(98)00381-8 [19] TAN I A W, AHMAD A L, HAMEED B H. Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology [J]. Chemical Engineering Journal, 2008, 137(3): 462-470. doi: 10.1016/j.cej.2007.04.031 [20] 张泽志, 韩春亮, 李成未. 响应面法在试验设计与优化中的应用 [J]. 河南教育学院学报(自然科学版), 2011, 20(4): 34-37. ZHANG Z Z, HAN C L, LI C W. Application of response surface method in experimental design and optimization [J]. Journal of Henan Institute of Education (Natural Science Edition), 2011, 20(4): 34-37(in Chinese).
[21] 万一会. 基于网格絮凝-电化学技术的水处理装置的数值模拟与实验研究[D]. 重庆: 重庆大学, 2018. WAN Y H. The study on simulation and experimental of water treatment equipment-based on flocculation-electrochemical technique[D]. Chongqing: Chongqing University, 2018(in Chinese).
[22] 陈建孟, 潘伟伟, 刘臣亮. 电化学体系中羟基自由基产生机理与检测的研究进展 [J]. 浙江工业大学学报, 2008, 36(4): 416-422. doi: 10.3969/j.issn.1006-4303.2008.04.015 CHEN J M, PAN W W, LIU C L. Research progress on generation mechanism and determination of hydroxyl radical in electrochemical system [J]. Journal of Zhejiang University of Technology, 2008, 36(4): 416-422(in Chinese). doi: 10.3969/j.issn.1006-4303.2008.04.015
[23] 杨德敏. 电化学催化氧化页岩气压裂返排废水的实验研究[J]. 环境工程, 2016, 34(增刊1): 159-161, 269. YANG D M. Research of shale gas fracturing wastewater treatment by electro-catalytic oxidation[J]. Environmental Engineering, 2016, 34(Sup 1): 159-161, 269(in Chinese).
[24] 宋迪慧, 安路阳, 张立涛, 等. 响应曲面法优化电化学耦合体系预处理焦化废水 [J]. 化工学报, 2018, 69(9): 4001-4011. SONG D H, AN L Y, ZHANG L T, et al. Optimization of electrochemical coupling system process for coking waste water pretreatment by response surface method [J]. CIESC Journal, 2018, 69(9): 4001-4011(in Chinese).
[25] LESTER Y, FERRER I, THURMAN E M, et al. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment [J]. Science of the Total Environment, 2015, 512/513: 637-644. doi: 10.1016/j.scitotenv.2015.01.043 [26] STRONG L C, GOULD T, KASINKAS L, et al. Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering[J]. Journal of Environmental Engineering, 2014, 140(5): 2015, 140: B4013001 [27] OREM W, TATU C L, VARONKA M, et al. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale [J]. International Journal of Coal Geology, 2014, 126: 20-31. doi: 10.1016/j.coal.2014.01.003 [28] RANI M, SHIM W J, HAN G M, et al. Qualitative analysis of additives in plastic marine debris and its new products [J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 352-366. doi: 10.1007/s00244-015-0224-x [29] MOLDOVAN Z, MARINCAS O, POVAR I, et al. Environmental exposure of anthropogenic micropollutants in the Prut River at the Romanian-Moldavian border: A snapshot in the lower Danube river basin [J]. Environmental Science and Pollution Research, 2018, 25(31): 31040-31050. doi: 10.1007/s11356-018-3025-8