[1] GHARAMI S, AICH K, PATRA L, et al. Detection and discrimination of Zn2+ and Hg2+ using a single molecular fluorescent probe [J]. New Journal of Chemistry, 2018, 42(11): 8646-8652. doi: 10.1039/C8NJ01212A
[2] 张云苹. 水中重金属离子的检测及其应用研究[D]. 济南: 济南大学, 2016. ZHANG Y P. Research on detection and application of heavy metal ions in the water[D]. Jinan: University of Jinan, 2016(in Chinese).
[3] 陈丽娟, 刘仁勇, 赵丹, 等. 聚乙烯亚胺修饰的碳点荧光探针用于检测汞离子 [J]. 分析化学, 2020, 48(8): 1067-1074. doi: 10.19756/j.issn.0253-3820.191528 CHEN L J, LIU R Y, ZHAO D, et al. A novel fluorescent probe for mercury ion detection based on polyethyleneimine modified carbon dots [J]. Chinese Journal of Analytical Chemistry, 2020, 48(8): 1067-1074(in Chinese). doi: 10.19756/j.issn.0253-3820.191528
[4] ZHANG B X, ZHANG H J, ZHONG M, et al. A novel off-on fluorescent probe for specific detection and imaging of cysteine in live cells and in vivo [J]. Chinese Chemical Letters, 2020, 31(1): 133-135. doi: 10.1016/j.cclet.2019.05.061
[5] 张磊, 许森, 赵雅梦, 等. 稀土配位聚合物荧光探针的制备及其对痕量汞离子的检测 [J]. 分析测试学报, 2020, 39(12): 1527-1532. doi: 10.3969/j.issn.1004-4957.2020.12.014 ZHANG L, XU S, ZHAO Y M, et al. Preparation of a fluorescent probe based on terbium coordination polymers and its detection on trace mercury ions [J]. Journal of Instrumental Analysis, 2020, 39(12): 1527-1532(in Chinese). doi: 10.3969/j.issn.1004-4957.2020.12.014
[6] ZHU X J, FU S T, WONG W K, et al. A near-infrared-fluorescent chemodosimeter for mercuric ion based on an expanded porphyrin [J]. Angewandte Chemie, 2006, 45(19): 3150-3154. doi: 10.1002/anie.200600248
[7] 管怡晗, 黎广进, 刘盛华, 等. 汞离子比色型荧光探针的合成与性质 [J]. 环境化学, 2021, 40(8): 2544-2550. doi: 10.7524/j.issn.0254-6108.2020041201 GUAN Y H, LI G J, LIU S H, et al. Synthesis and properties of colorimetric fluorescent probe for mercury ions [J]. Environmental Chemistry, 2021, 40(8): 2544-2550(in Chinese). doi: 10.7524/j.issn.0254-6108.2020041201
[8] DUAN Q X, LV X Y, LIU C Y, et al. Dichlororesorufin-based colorimetric and fluorescent probe for ultrasensitive detection of mercury ions in living cells and zebrafish [J]. Industrial & Engineering Chemistry Research, 2018, 58(1): 11-17.
[9] 张勇, 王强, 李伟, 等. 基于硫磺素T的可视化检测汞离子的荧光探针 [J]. 有机化学, 2014, 34(2): 403-408. doi: 10.6023/cjoc201309001 ZHANG Y, WANG Q, LI W, et al. Thioflavin T-based fluorescent probe for visual detection of Hg2+ [J]. Chinese Journal of Organic Chemistry, 2014, 34(2): 403-408(in Chinese). doi: 10.6023/cjoc201309001
[10] WANG Y, ZHANG L, HAN X Y, et al. Fluorescent probe for mercury ion imaging analysis: Strategies and applications [J]. Chemical Engineering Journal, 2021, 406: 127166. doi: 10.1016/j.cej.2020.127166
[11] 秦思瑶. 新型汞离子荧光探针的设计、合成及应用[D]. 杭州: 浙江理工大学, 2019. QIN S Y. The design, synthesis, and application of fluorescent probes for the detection of mercury ions[D]. Hangzhou: Zhejiang Sci-Tech University, 2019(in Chinese).
[12] WANG Z L, ZHANG Y, YIN J, et al. A novel camphor-based “turn-on” fluorescent probe with high specificity and sensitivity for sensing mercury(Ⅱ) in aqueous medium and its bioimaging application [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12348-12359.
[13] ZHANG S R, WANG Q, LIU X W, et al. Sensitive and selective fluorescent probe for selenol in living cells designed via a pK a shift strategy [J]. Analytical Chemistry, 2018, 90(6): 4119-4125. doi: 10.1021/acs.analchem.8b00066
[14] CAO J F, SUN W, FAN J L. Insights into bishemicyanines with long emission wavelengths and high sensitivity in viscous environments [J]. Chinese Chemical Letters, 2020, 31(6): 1402-1405. doi: 10.1016/j.cclet.2019.10.006
[15] SERVINIS L, HENDERSON L C, ANDRIGHETTO L M, et al. A novel approach to functionalise pristine unsized carbon fibre using in situ generated diazonium species to enhance interfacial shear strength [J]. Journal of Materials Chemistry A, 2015, 3(7): 3360-3371. doi: 10.1039/C4TA04798B
[16] 张晟瑞. 半花菁类荧光探针的构建及应用研究[D]. 西安: 西北大学, 2018. ZHANG S R. Development of fluorescent probes based on hemicyanines and their applications[D]. Xi'an: Northwest University, 2018(in Chinese).
[17] VALEUR B, BERBERAN-SANTOS M N . Molecular fluorescence: Principles and applications[M]. Weinheim: Wiley-VCH, [2013]
[18] LI G J, WANG J L, LI D Y, et al. A Hg(Ⅱ)-specific probe for imaging application in living systems and quantitative analysis in environmental/food samples [J]. Chinese Chemical Letters, 2021, 32(4): 1527-1531. doi: 10.1016/j.cclet.2020.09.040
[19] YANG Y, SHEN R, WANG Y Z, et al. A selective turn-on fluorescent sensor for Hg (II) in living cells and tissues [J]. Sensors and Actuators B:Chemical, 2018, 255: 3479-3487. doi: 10.1016/j.snb.2017.09.180
[20] GU B, HUANG L Y, SU W, et al. A benzothiazole-based fluorescent probe for distinguishing and bioimaging of Hg2+ and Cu2+ [J]. Analytica Chimica Acta, 2017, 954: 97-104. doi: 10.1016/j.aca.2016.11.044
[21] YUAN Z H, YANG Y S, LV P C, et al. Recent progress in small-molecule fluorescent probes for detecting mercury ions [J]. Critical Reviews in Analytical Chemistry, 2022, 52(2): 250-274. doi: 10.1080/10408347.2020.1797466
[22] PUYOL M, ENCINAS C, RIVERA L, et al. Characterisation of new norcyanine dyes and their application as pH chromoionophores in optical sensors [J]. Dyes and Pigments, 2007, 73(3): 383-389. doi: 10.1016/j.dyepig.2006.01.006
[23] ZHANG D X, XU N, LI H D, et al. Probing thiophenol pollutant in solutions and cells with BODIPY-based fluorescent probe [J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9303-9309.
[24] 孙雪花, 张锦婷, 赵李艳, 等. 基于氮掺杂碳量子点的制备及其对Hg2+的响应 [J]. 环境化学, 2021, 40(1): 321-326. doi: 10.7524/j.issn.0254-6108.2020061504 SUN X H, ZHANG J T, ZHAO L Y, et al. Preparation of nitrogen-doped carbon quantum dots and its response to Hg2+ [J]. Environmental Chemistry, 2021, 40(1): 321-326(in Chinese). doi: 10.7524/j.issn.0254-6108.2020061504
[25] LI G J, GUAN Y H, YE F Y, et al. Cyanine-based fluorescent indicator for mercury ion and bioimaging application in living cells [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 239: 118465. doi: 10.1016/j.saa.2020.118465
[26] WANG Y, HOU X F, LI Z S, et al. A novel hemicyanine-based near-infrared fluorescent probe for Hg2+ ions detection and its application in living cells imaging [J]. Dyes and Pigments, 2020, 173: 107951. doi: 10.1016/j.dyepig.2019.107951
[27] YUAN G, LV H H, LIU H, et al. Hemicyanine-based colorimetric and near-infrared fluorescent off-on probe for Hg2+ detection and imaging in living cells and zebrafish [J]. Dyes and Pigments, 2020, 183: 108674. doi: 10.1016/j.dyepig.2020.108674
[28] ZHANG W T, YU C W, YANG M, et al. Characterization of a Hg2+-selective fluorescent probe based on rhodamine B and its imaging in living cells [J]. Molecules (Basel, Switzerland), 2021, 26(11): 3385. doi: 10.3390/molecules26113385
[29] WANG L H, CHEN H, ZHANG N N, et al. Reaction-based two novel fluorescent probes for Hg2+ detection using benzothiazole derivatives via ESIPT mechanism in aqueous solution and serum [J]. Tetrahedron Letters, 2021, 64: 152735. doi: 10.1016/j.tetlet.2020.152735