[1] 黄钟霆, 朱松梅, 周振, 等. 造纸工业园区污水处理厂溶解性有机物迁移转化规律[J]. 环境工程学报, 2017, 11(3): 1575-1580.
[2] TOCZYŁOWSKA-MAMIŃSKA R. Limits and perspectives of pulp and paper industry wastewater treatment: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 764-772. doi: 10.1016/j.rser.2017.05.021
[3] 杨收, 万金泉, 马邕文, 等. PS无酸高级氧化工艺深度处理制浆造纸废水的工程应用[J]. 环境工程学报, 2021, 15(1): 224-235.
[4] ZARKOVIC D B, TODOROVIC Z N, RAJAKOVIC L V. Simple and cost effective measures for the improvement of paper mill effluent treatment: A case study[J]. Journal of Cleaner Production, 2011, 19(6/7): 764-774.
[5] POKHREl D, VIRARAGHAVAN T. Treatment of pulp and papermill wastewater: A review[J]. Science of the Total Environment, 2004, 333(1-3): 37-58. doi: 10.1016/j.scitotenv.2004.05.017
[6] 张水丽, 范立维, 陈嫩清, 等. 人工湿地净化造纸废水尾水及优势植物筛选[J]. 环境工程学报, 2014, 8(9): 3718-3724.
[7] 倪静. 制浆造纸废水处理工艺研究与实践[D]. 扬州: 扬州大学, 2021.
[8] 冯东望, 武彦巍, 杜家绪, 等. 杨木化机浆制浆造纸废水处理工艺运行实例[J]. 纸和造纸, 2019, 38(5): 47-50.
[9] 郭玉梅, 吴毅晖, 李志平, 等. 昆明某工业园区废纸造纸废水处理工艺探讨[J]. 水处理技术, 2017, 43(6): 100-102.
[10] GAHYUN B, JAAI K, KYUNGJIN C, et al. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation[J]. Applied Microbiology & Biotechnology, 2015, 99(23): 10355-10366.
[11] YUE Z B, MA D, WANG J, et al. Goethite promoted anaerobic digestion of algal biomass in continuous stirring-tank reactors[J]. Fuel, 2015, 159(1): 883-886.
[12] 车碧宁. 纳米Fe3O4强化焦化废水厌氧处理及其对微生物群落的影响[D]. 大连: 大连理工大学, 2019.
[13] BAEK G, KIM J, LEE C. Influence of ferric oxyhydroxide addition on biomethanation of waste activated sludge in a continuous reactor[J]. Bioresour Technol, 2014, 166: 596-601. doi: 10.1016/j.biortech.2014.05.052
[14] 李诗阳. 铁氧化物强化厌氧生物处理过程中胞外电子传递及其调控[D]. 大连: 大连理工大学, 2019.
[15] LIU F, ROTARU A, SHRESTHA P, et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange[J]. Environmental Microbiology, 2015, 17(3): 648-655. doi: 10.1111/1462-2920.12485
[16] 李杨. 铁强化厌氧水解酸化微生物种间氢传递及其调控[D]. 大连: 大连理工大学, 2017.
[17] PLIEGO G, ZAZO J A, GARCIA-MUOZ P, et al. Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(24): 37-41.
[18] 戎宇舟, 葛强, 李清, 等. 制浆造纸厂富铁污泥性质及其回用为污泥调理剂研究[J]. 西安交通大学学报, 2016, 50(9): 43-48.
[19] 吴明. Fenton铁泥延缓高钙废水厌氧颗粒污泥钙化及其作用机理研究[D]. 南宁: 广西大学, 2019.
[20] 阳帆, 黄挺, 张毅, 等. Fenton铁泥制取硫酸亚铁效果与性能研究[J]. 工业水处理, 2019, 39(8): 48-51.
[21] 樊帆. 回收Fenton铁泥制备高效磁性聚合硫酸铁的研究[D]. 南宁: 广西大学, 2017.
[22] 庄晓杰. Fenton铁泥资源化利用的研究进展[J]. 广州化工, 2021, 49(10): 25-26.
[23] WANG M, ZHAO Z, ZHANG Y. Disposal of Fenton sludge with anaerobic digestion and the roles of humic acids involved in Fenton sludge[J]. Water Research, 2019, 163: 114900. doi: 10.1016/j.watres.2019.114900
[24] 葛强, 张哲, 王慧, 等. 制浆造纸厂芬顿铁泥酸处理及其回用为污泥调理剂的研究[J]. 纸和造纸, 2021, 40(2): 24-30.
[25] KUPPUSAMY S, YI L, EDMOND S. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: Role of extracellular polymeric substances in extracellular electron transfer[J]. Chemical Engineering Journal, 2020, 395: 125077. doi: 10.1016/j.cej.2020.125077
[26] YU L, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by[J]. Scientific Reports, 2015, 5: 16221. doi: 10.1038/srep16221
[27] 中华人民共和国建设部. 城市污水处理厂污泥标准检验方法: CJ/T 221-2005[S]. 北京: 中国标准出版社, 2006.
[28] 国家环保总局. 水质 化学需氧量的测定 快速消解分光光度法: HJ/T399-2007. 北京: 中国环境科学出版社, 2008.
[29] 姚敦璠. 针铁矿和赤铁矿对乙酸钠厌氧产CH4的影响[D]. 合肥: 合肥工业大学, 2013.
[30] 国家环保总局. 水质 铁的测定 邻菲啰啉分光光度法: HJ/T345-2007. 北京: 中国环境科学出版社, 2007.
[31] DOROTA F, CHEN Q, MUN B S, et al. In situ ambient pressure XPS observation of surface chemistry and electronic structure of alpha-Fe2O3 and gamma-Fe2O3 nanoparticles[J]. Applied Surface Science, 2018, 455: 1019-1028. doi: 10.1016/j.apsusc.2018.06.002
[32] HUANG G X, WANG C Y, YANG C W, et Al. Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with Mn1.8Fe1.2O4 Nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618.
[33] 赵子升. MEC及铁材料强化剩余污泥厌氧消化及其机理研究[D]. 大连: 大连理工大学, 2019.
[34] CRUZ V, CAROLINA A F; FAZI S; et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environmental Science & Technology, 2014, 48(13): 7536-7543.
[35] 汪彩琴. 磁铁矿对废水厌氧生物处理过程直接种间电子传递(DIET)的调控机理研究[D]. 杭州: 浙江大学, 2020.
[36] 胡安东. 赤泥促进污泥厌氧消化产甲烷性能及机制研究[D]. 福州: 福建农林大学, 2019.
[37] 王先宝, 陈甜甜, 高楚玥, 等. AAO工艺中活性污泥胞外聚合物的电化学特性[J]. 陕西科技大学学报, 2021, 39(6): 32-38.
[38] 李向明. 针铁矿对模拟废水厌氧产甲烷过程的作用研究[D]. 合肥: 合肥工业大学, 2017.
[39] 岳喜明. Fe(Ⅱ), Se(Ⅵ)对厌氧处理APMP制浆废水的影响研究[D]. 郑州: 郑州大学, 2021.