[1] |
GOU C L, WANG Y Q, ZHANG X Q, et al. Effects of chlorotetracycline on antibiotic resistance genes and the bacterial community during cattle manure composting[J]. Bioresoure Technology, 2021, 323: 124517. doi: 10.1016/j.biortech.2020.124517
|
[2] |
BILAL M, MEHMOOD S, RASHEED T, et al. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact[J]. Current Opinion in Environmental Science & Health, 2020, 13: 68-74.
|
[3] |
CARDETTI M, RODRÍGUEZ S, SOLA A, et al. Use (and abuse) of antibiotics in perinatal medicine[J]. Anales de Pediatría, 2020, 93(3): 201-207.
|
[4] |
DUTTA J, MALA A A. Removal of antibiotic from the water environment by the adsorption technologies: A review[J]. Water science and technology, 2020, 82(3): 401-426.
|
[5] |
GOPAL G, ALEX S A, Chandrasekaran N, et al. A review on tetracycline removal from aqueous systems by advanced treatment techniques[J]. RSC Advances, 2020, 10(45): 27081-27095. doi: 10.1039/D0RA04264A
|
[6] |
OUYANG J B, ZHOU L M, LIU Z R, et al. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review[J]. Separation and Purification Technology, 2020, 253: 117536. doi: 10.1016/j.seppur.2020.117536
|
[7] |
HU J T, ZHOU X, SHI Y X, et al. Enhancing biochar sorption properties through self-templating strategy and ultrasonic fore-modified pretreatment: Characteristic, kinetic and mechanism studies[J]. Science of the Total Environment, 2021, 769: 144574. doi: 10.1016/j.scitotenv.2020.144574
|
[8] |
ZENG S Q, KAN E S. Chemical activation of forage grass-derived biochar for treatment of aqueous antibiotic sulfamethoxazole[J]. ACS Omega, 2020, 5(23): 13793-13801. doi: 10.1021/acsomega.0c00983
|
[9] |
CHANG P H, JEAN J S, JIANG W T, et al. Mechanism of tetracycline sorption on rectorite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 339(1-3): 94-99.
|
[10] |
ZHANG D, NIU H Y, ZHANG X L, et al. Strong adsorption of chlorotetracycline on magnetite nanoparticles[J]. Journal of Hazardous Materials, 2011, 192(3): 1088-1093. doi: 10.1016/j.jhazmat.2011.06.015
|
[11] |
AMALY N, E L-MOGHAZY A Y, SUN G, et al. Effective tetracycline removal from liquid streams of dairy manure via hierarchical poly (vinyl alcohol-co-ethylene)/polyaniline metal complex nanofibrous membranes[J]. Journal of Colloid and Interface Science, 2021, 597: 9-20. doi: 10.1016/j.jcis.2021.03.165
|
[12] |
LI Z Q, QI M Y, TU C Y, et al. Highly efficient removal of chlorotetracycline from aqueous solution using grapHene oxide/TiO2 composite: Properties and mechanism[J]. Applied Surface Science, 2017, 425: 765-775. doi: 10.1016/j.apsusc.2017.07.027
|
[13] |
FENG Y H, WANG Y H, LIU G, et al. Modification of coal-tar pitch with 10-Undecenal to reduce the content of environmental pollutants of polycyclic aromatic hydrocarbons[J]. Journal of Cleaner Production, 2018, 172: 2544-2552. doi: 10.1016/j.jclepro.2017.11.156
|
[14] |
TABASSAM R, ALVI F, ASLAM N, et al. Electrochemical investigation of LiMn2O4/asphalt and LiMn2O4/bituminous coal based cathode composites for efficient lithium-ion battery[J]. Materials Letters, 2021, 302: 130275. doi: 10.1016/j.matlet.2021.130275
|
[15] |
余健星, 余谟鑫, 蒯乐, 等. 核桃青皮制备高含氧量多孔炭及其对Ni~(2+)的吸附性能[J]. 高等学校化学学报, 2020, 41(11): 2464-2472.
|
[16] |
ZHANG C, LI Y Y, LI Y J, et al. Synthesis and Zn(II) modification of hierarchical porous carbon materials from petroleum pitch for effective adsorption of organic dyes[J]. ChemospHere, 2019, 216: 379-386. doi: 10.1016/j.chemosphere.2018.10.164
|
[17] |
敖蒙蒙, 魏健, 陈忠林, 等. 四环素类抗生素环境行为及其生态毒性研究进展[J]. 环境工程技术学报, 2021, 11(02): 314-324.
|
[18] |
QURESHI U A, HAMEED B H, AHMED M J. Adsorption of endocrine disrupting compounds and other emerging contaminants using lignocellulosic biomass-derived porous carbons: A review[J]. Journal of Water Process Engineering, 2020, 38: 101380. doi: 10.1016/j.jwpe.2020.101380
|
[19] |
HUANG X W, YANG W Q, ZHANG G S, et al. Alternative synthesis of nitrogen and carbon co-doped TiO2 for removing fluoroquinolone antibiotics in water under visible light[J]. Catalysis Today, 2021, 361: 11-16. doi: 10.1016/j.cattod.2019.10.034
|
[20] |
WANG B, XU X Y, TANG H, et al. Highly efficient adsorption of three antibiotics from aqueous solutions using glucose-based mesoporous carbon[J]. Applied Surface Science, 2020, 528: 147048. doi: 10.1016/j.apsusc.2020.147048
|
[21] |
ZHAN H Y, WANG Y T, MI X Y, et al. Effect of graphitic carbon nitride powders on adsorption removal of antibiotic resistance genes from water[J]. Chinese Chemical Letters, 2020, 31(10): 2843-2848. doi: 10.1016/j.cclet.2020.08.015
|
[22] |
HE X J, LI R C, QIU J S, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon, 2012, 50(13): 4911-4921. doi: 10.1016/j.carbon.2012.06.020
|
[23] |
JUNG K W, KIM J H, CHOI J W. Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride[J]. Composites Part B:Engineering, 2020, 187: 107867. doi: 10.1016/j.compositesb.2020.107867
|
[24] |
LIU J F, LIN H, DONG Y B, et al. The effective adsorption of tetracycline onto MoS2@Zeolite-5: Adsorption behavior and interfacial mechanism[J]. Journal of Environmental Chemical Engineering. 2021, 9(5): 105912
|